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The nucleus pulposus (NP) plays a critical role in resisting loads placed on the 

spine, and therefore, the intervertebral disc.  The function of the NP is to generate a 

hydrostatic pressure to evenly disperse the load within the disc.  This ability hinges 

on the hydration of the disc, which is affected by age, health and even prior load 

history.  This dissertation aims to elucidate key points about how the disc functions 

and reacts, both mechanically and biologically, to different sets of axial loading.   We 

demonstrate our ability to create a degenerate disc model using trans-annular 

puncture in caudal rat discs and verify using viscoelastic analysis and histologic 

examination.  Using a custom miniature fiber-optic pressure sensor, we determined 

the loss of pressurization in a degenerate versus a healthy disc.  This compromised 

ability to generate an intradiscal pressure is essential, and indicates that a degenerate 

disc inadequately distributes the load and may lead to pain, injury and lack of 

function.  We then investigated the influence of load history on the NP.  Using a 
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preload placed on a disc beforehand, we change the hydrated state of the disc before 

the exertion load is applied.  The viscoelastic creep response was analyzed and 

showed changes due to the addition of the preload.  We also directly observed this 

change by using the miniature pressure sensors to measure intradiscal pressure during 

the loading regime.  To further track changes caused by the introduction of a preload, 

we examined the gene expression of several associated extracellular matrix proteins 

after loading.  The results demonstrate changing gene expression contrary to the 

expected outcome, given the understood pressurized cellular environment.  We 

speculate that instead of a hydrostatic pressure driven response, the tonic environment 

dictated genetic upregulation.  Using collaborative efforts, we assessed the ability to 

use Pneumatic Artificial Muscles as the actuating element in a long term loading 

device for caudal rat discs.  In conclusion, we gathered new reactions from the NP 

given a variety of changed states, both diseased and loaded.  Our new findings will 

help complete the picture to fully understand how the disc functions, specifically the 

response of the NP 
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Chapter 1 Introduction 

The intervertebral disc (IVD) is a cartilaginous joint in the body responsible 

for flexibility and absorbing loads in the spine.  The often described joint is referred 

to as a motion segment, consisting of two adjacent vertebrae with the IVD 

sandwiched between them.  The disc is divided into three main portions: the nucleus 

pulposus (NP), the annulus fibrosus (AF) and the endplates. Unlike the more 

commonly thought of articular cartilage, the IVD has a very complex design.  The NP 

makes up the gelatinous core, which consists of a viscous gel composed mainly of 

type II collagen and proteoglycans, primarily aggrecan1.  The NP is then surrounded 

circumferentially by layers of fibrocartilage called the AF.  The AF forms concentric 

lamellar rings, made with a greater concentration of type I collagen, around the NP1.  

The endplates form cartilaginous caps on the proximal and distal region of the disc 

and are considered path for nutrient transport.  Due to the avascular nature of the disc, 

it must rely on simple transport phenomenon to diffuse nutrients from a relatively far 

distance.  Much like the intricate nature of the structure, the cellular content of the 

disc is equally complex.  The NP consists of chondrocytic cells as well as another 

type of cell of notochordal nature that begin to die off during human adolescence1.  

The AF contains cells that begin like chondrocytes in the areas towards the inner 

portion of the disc and become more and more fibroblastic as you radiate towards the 

outer edges. 
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Figure 1.1  A front or sagital view of  a caudal rat motion segment is shown in A. 
with the vertebrae, NP, AF and end plates labeled.  In B. a transverse view of the 
disc shows the direction of the hydrostatic swelling pressure of the NP (blue) and 
the circumferential tension of the AF (red).  Lastly, C. is a histological section of 
a caudal rat disc stained with Safranin O and Fast green.  Proteoglycans are 
stained red, while collagen is counterstained blue and nuclei stained black. 
  

The ability for the disc to resist loading is dependent on the disc’s complicated 

structure.  The gelatinous NP generates a hydrostatic pressure that evenly distributes 

the applied load equally in all directions.  The lamellar rings of the AF then acts in 

tension, surrounding the NP and keeping the outward pushing force further diverted 

circumferentially.  This unique structural function is dependent on the ability for each 

part to perform its job.  Importantly, the NP must remain hydrated to be able to 

generate an intradiscal hydrostatic pressure.  Hydration of the NP is dependent on 

extracellular matrix, as the NP is proteoglycan rich1.  The glycosaminoglycans 
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abundantly attached to proteoglycans such as aggrecan, use its long, negatively 

charged, tightly packed nature to attract water molecules to help the NP swell. 

 As mentioned, this intricate joint system is dependent on the function of many 

parts, which are not without issues of health and age.  Degenerate disc disease is an 

age related breakdown of the cartilage components in the disc.  Beginning as early as 

adolescence2, the human disc begins to slowly degenerate.  Though not yet found as a 

direct cause, a high incidence of degenerate disc disease has been linked with 

nondescript low back pain.  A condition that affects people from all walks of life, 

throughout the world3.  This disease stems from a breakdown of both the AF and the 

NP.  The AF under degeneration becomes more and more fibrous, and loses tensile 

properties.  The lamellar rings that define the AF begin to crack and lose definition.  

This loss of structure causes severe impact on the function.  Cellularly, the inner 

portion of the AF has displayed properties of both fibroblasts and chondrocytes, 

however, as the breakdown begins, even cells directly adjacent with the nucleus 

fibrosus become very fibroblastic.  The NP almost undergoes a phase change, as the 

viscous gelatinous material firms up and becomes a more solid fibrous material.  The 

extracellular matrix breaks down, as the proteoglycans are broken down, with the 

glycosaminoglycan chains cleaved2.  The type II collagen nature of the NP begins to 

shift towards a type I collagen dominance.  Because of the proteoglycan breakdown, 

the swelling capacity of the NP is severely damaged.  Instead of a hydrostatic 

pressure that evenly distributing load, the NP has a more solid core, which creates 

uneven pressure peaks throughout, which are notably higher and cause uneven 

loading4.  As a representative figure, in juveniles, the proteoglycan accounts for 70% 
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dry weight of the NP, but falls dramatically to 20% in mature adults5.  Using this loss 

in hydration, MRI’s have been used as a detection tool, imaging the water 

concentration in the disc and quantifying the intensity or lack thereof as an early sign 

that can be detected without invasive procedures6-9.  As a part of the degenerating NP, 

the presence of notochordal cells lessens as chondrocytes take over, but also slowly 

die off until the NP becomes acellular.  It is unclear whether notochordal cells die off 

due to degeneration or that their disappearance is the cause of degeneration. 

Mechanically, the loss of hydration stiffens the disc significantly, does not allow the 

disc to swell and respond to applied pressures.  Overall, the breakdown compromises 

all aspects of the disc and changes how the disc is able to function.  Studies suggest 

that the stiffer NP may even transfer the load to the AF, changing the circumferential 

tensile rings to more of an axial loaded column10.  As it is briefly mentioned, the 

process of degeneration is complicated and is not fully understood.  In conjunction 

with understanding disc degeneration and breakdown, further research must also be 

done to more thoroughly investigate the behavior of the healthy disc as well. 

 One lesser understood phenomenon regarding disc mechanics is the concept 

of load history and its effects on how the disc responds after certain loading 

scenarios.  In the past, most loading experiments that track past loading are part of 

long term force application using cyclic loading11-14.  However, the concept of load 

history considers that a prior load will affect how the next load is responded to on the 

basis of constant changing hydration of the disc.  Early exploration of this concept 

was only in extreme cases, as the behavior of hydrated, superhydrated and dehydrated 

discs were compared15.  Only after a number of dynamic loading experiments 
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presented unexpected gene expression results was it suggested that load history, 

specifically immediate prior loading conditions, may be a significant factor to 

consider16.  Hydration in the disc may be lessened or compromised after even a small 

load, will affect the disc’s response to a larger load after, unless there is ample time 

for recovery.  While the concept is simple in nature, the biological components of the 

disc make it more than trivial to fully understand. 

 It is clear that the NP is an important aspect of the disc, and while the general 

mechanics and abilities of the NP is understood, many of the nuances and causes for 

responses are not yet known.  Further research is necessary to fully understand the 

individual aspects of the disc and what it is responsible for biologically.  Without this 

understanding, we have an incomplete picture of what the disc, or NP does.  A 

unifying theme was presented to us for exploration, as the concept of specifically NP 

hydration was omnipresent in all aspects of disc function and behavior.  The 

breakdown of the extracellular matrix caused by protease breakdown as well as lack 

of production all lead to the compromise of the disc’s swelling capacity.  The 

retention of water after prior loading is the cause of differing mechanical response of 

the disc given equal loading scenarios.   
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Figure 1.2 A general flow of the experiments.  The new technologies are 
represented in red show collaboration with an existing lab with a unique device 
that was adapted for our purposes.  Blue represents completed experiments that 
will result in publication.  Green represents potential experimental pursuits. 
 

To this end, the hydration is the focus of the studies that compose this 

dissertation.  We began by establishing a degenerate disc model using a trans-annular 

puncture in a rat tail disc.  Analysis of the viscoelastic creep response and the overall 

histology of the disc, degeneration was verified for each experimental method.  The 

verification of our degenerate model allowed for further investigation of the 

degenerative process and effects on hydration and mechanics.  In conjunction with 

the Intelligent Optics Lab, a miniature fiber-optic interference based pressure sensor 

was developed to measure the intradiscal pressure generated in the NP.  Using our 
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verified degenerate disc model, and our uniquely small pressure sensor, we were able 

to measure the pressure generation of the disc under loading conditions.  With this, 

we were able to compare the applied load to the generated pressure, for both healthy 

and degenerate discs.  This further verified our degenerate model, as results paralleled 

past human and pig studies.  Additionally, further knowledge was gained about the 

pressurization of the disc, allowing the possibility to predict the intradiscal pressure 

during specific loading conditions.  To gain a better grasp of the hydration and load 

history, a study was performed to monitor the mechanics of the disc given specific 

load histories.  This study then discovered subtle changes in behavior by fitting the 

standard solid viscoelastic model to the creep response caused by prior load history.  

In addition, a fluid transport model, created specifically to model disc behavior also 

showed changes in response, due to load history.   This model suggested physical 

parameters that played critical roles in this changing behavior, one of which was the 

importance of the intradiscal pressure.  To further pursue this point, another 

intradiscal pressure experiment was conducted to measure the effects of load history.  

After having documented the pressurization response in the NP given specific loading 

regimes, the biological response of these load histories were also investigated.  By 

knowing key information about the physical environment the cells were exposed to, 

learned in previous experiments, the biological response through gene expression 

could be linked to these environmental factors.  The loading regimes for the differing 

load histories were limited to short durations due to the in vivo nature and the time 

limit on anesthesia, so a long term in vivo loading device was developed.  In order to 

create a lightweight, appropriately sized apparatus, the Smart Structures Laboratory 
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developed a mini-pneumatic artificial muscle to function as the actuating component 

in our loading device.  Experiments were done to characterize and optimize 

components for the in vivo loading device, which will be used in the future to apply 

long term loading regimes on caudal rat discs. The aims of this set of experiments is 

to further enlighten the function and behavior, both mechanically and biologically of 

the disc.  The general outline of research is shown in Figure 1.2.  The central theme of 

hydration is shown to be the dictating cause of disc behavior, for healthy and 

degenerate discs, as well as those with differing load histories. 

 The presented research will offer another critical step in filling the gap of 

knowledge towards fully understanding the disc.  Load history is a critical aspect that 

has only begun to be explored, but has a huge impact on what we know about the 

disc.  The NP serves as a main portion of the puzzle that needs to be solved, and 

further exploration of how cells dictate and regulate the extracellular environment 

will also play a pivotal role in the future advancement of IVD therapies.  The field of 

IVD research lags behind the overall study of cartilage and joints; and is currently 

stalled. We currently have a superficial understanding of the main components of the 

disc, and while some research has moved on towards more direct application of that 

knowledge in the form of implants, procedures and therapies, they have been met 

with only marginal success by researching the specific point they need.  Basic 

scientific research about the details of function, response and behavior needs to reach 

a critical point before it completes a picture and allow for research to move on.  The 

knowledge gained about the NP in this research shows the impact of the changing 

hydration.  This impact affects the general intradiscal response, the cellular 
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production and the interactions with other parts of the disc.  Research is incremental, 

and this provides another step of knowledge in completing the picture, and providing 

better methods and a more holistic approach for developing IVD therapies.   

 

 



www.manaraa.com

 

 10 
 

Chapter 2 Degenerative Changes Induced by Intervertebral Disc 

Puncture are Associated with Sufficiency of Biomechanical 

Function1  

Numerous studies have been performed to outline the ability to induce 

degeneration in a variety of animal models.  These studies have shown a varying 

degree of success using a wide variety of procedures.  The motivation behind this 

experiment was to establish reliable procedures in our laboratory to induce 

degeneration in a caudal disc in the rat model.  We will investigate our puncture 

method and link the degenerative cascade to a compromise in the biomechanical 

function.  Secondarily, through changes in biomechanical function after puncture, we 

hoped to further elucidate the effects on the disc given smaller punctures, as many 

other procedures call for the injection or insertion into the disc. 

2.1 Introduction 

A variety of diagnostic, therapeutic, and basic research strategies to study 

degenerative disc disease (DDD) involve experimental procedures that compromise 

the integrity of the anulus fibrosus (AF), as well documented in a review by Elliott et 

al.17  For instance, stress profilometry has been performed in human discs in vitro
18-21 

and in vivo intradiscal pressure has been measured in both humans22-29 and animals,30-

35 including rodents.  Since the biomechanical function of individual disc subregions 

are inter-related, the act of sensor insertion must not induce compromise the ability 

                                                 
1 As published in AH Hsieh, D Hwang, DA Ryan, AK Freeman, and H Kim. Degenerative Changes 
Induced by Intervertebral Disc Puncture are Associated with Sufficiency of Biomechanical Function. 
SPINE (2009). 34(10): 998-1005. 
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for the disc to pressurize.  Importantly, in human studies minimization of AF injury 

should be considered so as not to alter disc mechanics. 

 Similarly, efforts to explore potential therapies, such as growth factor 

injection,36-39 gene therapy,40-43 and introduction of stem cells,44-49 all require a trans-

anular approach.  While most of these in vivo studies utilize rabbit models, several 

have used rodents.39, 40, 48, 49  Because the efficacy of all such regenerative therapies 

could be affected by the cells’ mechanical exposure, the ability for the disc to 

pressurize to physiologic levels may be desired. 

 Finally, anular injury has been used to induce simulated degeneration in 

various in vivo animal models, to investigate the etiology and mechanisms of DDD.  

Trans-anular approaches have been used to inject enzymatic agents for 

chemonucleolysis in several animal species,33, 50-58 including rodents.59-61  It has been 

suggested that digestion of proteoglycans induces nucleus pulposus (NP) 

depressurization and loss of tensional stress in the AF, resulting in altered disc 

mechanics33, 51, 62, 63 and, subsequently, degeneration.  Another approach to effect 

degeneration has been partial or full anular stab injury, which also has been used in a 

variety of species.64-72  While both single and multiple stabs have been employed,67, 70, 

72-74 it remains unclear whether degenerative changes are caused by the act of injury 

itself, or by the resultant change in the disc’s biomechanical function.   

 Motivated by this lingering question and by the need to establish limits on 

needle size for intradiscal procedures in rats, we sought to determine in this study the 

impact of anular injury size on the initiation of degeneration and biomechanical 

function of rat caudal discs.  Specifically, we used a combination of histologic 
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observation from in vivo experiments and in vitro characterization of disc creep 

behavior before and after hypodermic needle puncture of the AF.  Since disc 

mechanics depends on interstitial fluid flow, osmotic pressure, and intrinsic 

viscoelasticity of the extracellular matrix,75-79 we hypothesized that alteration in disc 

mechanics would depend on injury size.  Furthermore, since experimental studies 

have found that different sized anular injuries produce varying degrees of 

degeneration,67, 70 we secondarily hypothesized that there is a relationship between 

biomechanical function and susceptibility to disc degeneration.  This study found that 

puncturing discs with an 18g needle significantly compromised the behavior of the 

disc due apparently to extrusion of the nucleus pulposus, and this was statistically 

associated with induction of degenerative anular changes in vivo.  Our results will be 

important for reconciling findings from other studies that use a trans-anular approach 

in rats, and for our experiments that involve invasive techniques to measure 

intradiscal pressure.34, 35   

 

2.2 Methods 

2.2.1 Surgical procedure 

Forty-eight retired breeder (6-9 mo) Sprague-Dawley rats (Taconic Farms, 

Germantown, NY) were obtained and sacrificed, following approval from the 

Institutional Animal Care and Use Committee at the University of Maryland, College 

Park.  Of the 36 rats used for in vivo disc degeneration experiments, twelve were 

allocated for 18g needle puncture, nine for 22g puncture, and twelve for 26g 

puncture.  These were then evenly distributed among three time points (1, 2, and 4 
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weeks).  The remaining three rats were used for a 4 week sham control group.  Rats 

were anesthetized using isoflurane and the c6-7 motion segment identified, marked, 

and confirmed using radiography.  The diameters of the tail at the puncture site were 

measured with calipers to determine the necessary depth of needle insertion, and then 

the site of puncture was scrubbed with betadine and isopropyl alcohol.  Sterile 

hypodermic needles of the appropriate sizes were carefully inserted with the taper of 

the needle along the axial direction of the tail.  Film radiographs were taken after 

puncture to ensure proper insertion (Faxitron, Wheeling, IL).  For sham surgeries, 

needles were inserted to a shallow depth in order to puncture the skin but leave the 

disc uninjured.  After surgery, rats were revived and returned to normal cage activity 

with daily observation for pain and distress, which were absent for all rats. 

 

2.2.2 Mechanical testing 

The remaining 12 rats were euthanized, and coccygeal motion segments c6-7 

and c8-9 were carefully dissected free of all surrounding soft tissues to expose the 

intervertebral discs, yielding a total of 24 specimens.  Specimens were immediately 

frozen and maintained at -20°C.  Six specimens were allocated to each of four groups: 

18g, 22g, and 26g anular puncture, and a non-puncture control group.  On the day of 

testing, motion segments were thawed at room temperature in a PBS bath containing 

protease inhibitors.  Using custom-made fixtures, vertebrae were then embedded in 

cement (Fastray, Harry J. Bosworth Co., Skokie, IL) and mounted on a Bose 

Electroforce materials testing system (LM-1, Bose Corp., Eden Prarie, MN).  Once 
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mounted, specimens were submerged in a room temperature protease inhibitor 

solution. 

 Specimens first underwent a compressive tare load of 0.003 MPa (0.04 N) 

until equilibrium was reached (900 sec).  They were then subjected to identical intact 

preconditioning procedures by exposing discs to six consecutive creep compression 

cycles, each consisting of a 15 minute 0.3 MPa loading phase followed by a 30 

minute 0.003 MPa relaxation phase.  This protocol was designed based on using load 

levels approximating 1x body weight and on pilot experiments demonstrating 

reproducible creep behavior after 6 cycles of loading.  For each specimen, the 7th 

cycle of creep represented the mechanical behavior before anular puncture.  

Following the 7th cycle of creep and relaxation, the position of the motion segment 

was held constant for 5 minutes.  During these 5 minutes, the PBS bath was drained, 

and the AF was punctured, in a similar manner as in vivo studies, to a depth equal to 

one-half the measured disc diameter using a micrometer.  The PBS solution was 

immediately replaced.  Control motion segments were subjected to the same static 

phase and PBS removal/replacement.  An 8th and final cycle of creep and relaxation 

was subsequently performed to measure the effects of anular puncture.  

Representative data are shown in Figure 2.1. 
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Figure 2.1 A representative graph of compressive creep displacement illustrating 
the seven 15 minute creep-30 minute recovery cycles.  Following the 7th recovery 
period, the displacement was held fixed while the disc was punctured.  The 
specimens were then subjected to an 8th cycle of creep-recovery. 
 

2.2.3 Histology 

Following euthanasia (in vivo experiments) and mechanical testing (in vitro 

experiments), specimens were fixed in formalin, decalcified in a solution containing 

10% (w/v) sodium citrate and 20% formic acid, then processed for paraffin 

embedding.  Tissues were then sectioned at 6µm using a microtome.  A series of 

sagittal sections were stained with Safranin O/Fast green and inspected under light 

microscopy (Olympus America Inc., Center Valley, PA).  The existence of anular 

degenerative changes were assessed by three independent observers. 
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2.2.4 Data analysis 

Experimental data were fit to two different analytical solutions that have 

previously been used to describe creep compression.  The first is a stretched 

exponential function:80, 81   
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where the stretched parameter, β, and time constant, τ, are used to describe the 

transient compressive behavior, and ε0 and ε∞ are the initial and equilibrium 

displacements, respectively.  We calculated a value, εeff, to represent the difference 

between ε0 and ε∞ and corrected for estimated vertebral body deformations.81   

 The second is a model developed from fluid transport phenomena in different 

disc subregions:82 
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where the compaction of the nucleus pulposus is represented by D, the contribution of 

anular tension by G, and the permeability of the endplate by k.  Constants were the 

initial disc height, hi, applied creep load σ0 = 0.3 MPa, and estimated nucleus swelling 

pressure P0 = 0.1 MPa.  Parameters were obtained for each of the eight cycles of 

every specimen by curve fitting the experimental data with Equations (1) and (2) 

using MATLAB (The Mathworks, MA).  To account for inter-specimen variability, 

two ratios were calculated comparing the behavior of cycle 7 (before puncture) to 

cycle 6 (end of pre-conditioning), and comparing cycle 8 (after puncture) to cycle 7 

(before puncture). 
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2.2.5 Statistical analysis 

Ratio data were logarithmically transformed to improve normality, and the 

transformed data statistically analyzed using a General Linear Model and Fisher’s 

LSD post-hoc tests in SPSS 14.0 (SPSS, Inc., Chicago, IL).  In all analyses, critical 

significance levels were set to α = 0.05.  For all graphs, data are expressed as mean ± 

SEM.  To test whether there was an association between change in biomechanical 

function and degeneration, we established two categorical variables indicating the 

presence or absence of biomechanical effect and presence or absence of AF 

degenerative changes.  A 2x2 contingency table was then constructed based on 

histologic observation of in vivo experiments.  A Fisher’s exact test for 

independence83 – suitable for small population data sets – was used to test whether an 

association exists between puncture size and degenerative change. 

 

2.3 Results 

2.3.1 Anular degenerative changes induced by anular puncture 

Histology of punctured discs demonstrated marked differences in anular 

appearance among needle sizes (Figure 2.2).  In 18g specimens, obvious needle 

tracks, accompanied by inward bulging of the AF on the side of puncture, presence of 

multiple-cell chondrons, and NP extrusion into the intralamellar space were evident in 

1 week specimens and persisted through 2 weeks (Figure 2.3).  At 2 weeks, increased 

Safranin-O stained chondrons were present in the inner half of the AF, together with 
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increasing lamellar disorganization.  By 4 weeks, evidence of needle tracks was 

almost non-existent, and chondrocyte-like cell population and lamellar 

disorganization were enhanced.  In two of the 12 specimens (one at 2 weeks, one at 4 

weeks), no evidence of needle tracks or degenerate changes were observed.  

Punctures with needle sizes of 22g and 26g showed faint signs of needle tracks at 1 

week, but no discernable signs by 2 weeks.  Very little change in the lamellar 

appearance of the AF was observed over the course of 4 weeks except in 3 of the 21 

specimens.  In all of the degenerate specimens, the NP possessed large voids, even at 

4 weeks.  Presumably, these voids represent NP tissue that had extruded out and filled 

with other cells/tissues, which were lost in the fixation, processing, and sectioning 

steps.  Interestingly, the small portions of NP tissue that remained appeared to contain 

morphologically healthy chondrocyte-like cells. 
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Figure 2.2 Overview of morphologic observations of AF in punctured discs.  
Except in three discs, all 22 and 26g punctured discs resembled those shown.  No 
needle tracks could be definitively identified at any time point.  Loss of 
significant amounts of nucleus pulposus in 18g punctures led to inward bulging 
within 1 week, resulting in degenerative changes in the AF.  Needle tracks were 
evident in 1 and 2 week specimens, but not at 4 weeks. 
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Figure 2.3 Higher magnification of selected areas in the 18g punctured disc, 
showing inward anular bulging, distinct needle track, presence of multiple-cell 
chondrons in the margins of the NP and within the AF (arrows), and disruption 
of lamellar structure (circular inset). 
 

2.3.2 In vitro biomechanical testing 

During preconditioning (cycles 1-6), each parameter exhibited progressive 

changes that leveled off by the 6th cycle (Table 2.1), consistent with our pilot 

experiments.  Between preconditioning and the first test cycle (cycle 7), ratios of 

values for each parameter were close to unity, indicating very little change (Figure 

2.4).  No statistical differences among groups were detected (p > 0.25).   

 After puncture, there were statistically significant effects due to treatment 

(Figure 2.5) for parameters τ (p < 0.005), εeff (p < 0.05), G (p < 0.005), and k (p < 

0.01).  Pairwise comparisons revealed that, for all four parameters, differences were 
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statistically significant between the 18g group and every other group.  No 

combinations of control, 26g, and 22g pairwise comparisons possessed any 

statistically significant differences (p > 0.25).  The most profound changes were in 

parameters τ and k, which decreased and increased approximately 80%, respectively.  

Parameter D exhibited trends of decreasing values with increasing puncture size, 

while β did not show any identifiable trends. 

 

Table 2.1 Average parameter values obtained from creep data during 
preconditioning for all motion segments tested (n = 24) 

Parameter Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 

β 
0.537 ± 
0.008 

0.551 ± 
0.007 

0.545 ± 
0.008 

0.542 ± 
0.007 

0.533 ± 
0.007 

0.531 ± 
0.007 

τ (x103 sec) 
3.186 ± 
0.337 

5.573 ± 
0.499 

5.283 ± 
0.413 

5.109 ± 
0.415 

5.472 ± 
0.459 

5.224 ± 
0.389 

εeff  
0.296 ± 
0.011 

0.358 ± 
0.016 

0.366 ± 
0.019 

0.369 ± 
0.019 

0.376 ± 
0.021 

0.378 ± 
0.022 

D (N/mm) 
1.999 ± 
0.078 

3.111 ± 
0.124 

3.608 ± 
0.146 

3.954 ± 
0.171 

4.346 ± 
0.202 

4.554 ± 
0.220 

G (x10-4 
mm2/s) 

3.383 ± 
0.045 

3.913 ± 
0.065 

3.881 ± 
0.051 

3.805 ± 
0.067 

3.867 ± 
0.065 

3.877 ± 
0.065 

k (x10-4 
mm3/N.s) 

18.54 ± 
0.741 

11.91 ± 
0.536 

10.49 ± 
0.547 

9.623 ± 
0.513 

9.152 ± 
0.521 

8.961 ± 
0.549 
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Figure 2.4 Changes in parameter values from preconditioning to the pre-
puncture cycle expressed as a ratio of cycle 7:cycle 6.  For the most part, changes 
in parameter values were small, with the exception of τ, which exhibited the 
highest sensitivity in curve fitting procedures.  Statistical analyses found no 
significant differences among groups in any of the parameters.  Data are 
represented as mean ± SEM. 
 
 

 

Figure 2.5 Changes in parameter values with puncture expressed as a ratio of 
cycle 8:cycle 7.  Dramatic changes were induced in creep behavior after 
puncture using 18g needles, as illustrated by the large changes in parameters.  
Statistical analyses found no significant differences among groups in any of the 
parameters.  Data are represented as mean ± SEM. 
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 Histology of motion segments after testing provided information on extent of 

anular damage and extrusion of NP with creep compression.  Non-punctured control 

discs possessed an intact NP with some damage to parts of the AF that likely occurred 

during testing (Figure 2.6a).  With 26g punctures, only small voids in the nucleus 

were observed, and needle tracks were found to have collapsed presumably under 

loading (Figure 2.6b).  A greater loss of nuclear material, collapse of disc height, and 

more anular damage were evident for punctures using 22g needles (Figure 2.6c).  The 

most dramatic effects were found for 18g needle punctures, in which the majority of 

nucleus was extruded, and wide needle tracks were clearly present (Figure 2.6d). 
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Figure 2.6 Histological sections of the tested motion segments provided insight 
into the potential mechanisms of altered biomechanics.  The nucleus was intact 
for (a) control specimens.  With anular puncture using (b) 26g, (c) 22g, and (d) 
18g hypodermic needles, progressively increasing amounts of anular damage 
and loss of nuclear material were observed.  Arrows point to needle tracks 
caused by anular puncture. 
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2.3.3 Test for association between compromised biomechanics and degenerative 

changes in AF 

A contingency table was created (Table 2.2), where degeneration status of the 

AF of each disc was categorized according to the ability of the needle size to 

influence biomechanical function.  Analysis revealed a statistically significant 

association between induction of degenerative changes in the AF and needle puncture 

sizes that compromised biomechanical function (p = 0.00016). 

 

Table 2.2 Contingency table used for testing statistical association between 
biomechanical effect and induction of degenerative changes in AF 

Biomechanical Degenerate changes in AF?  

effect? No Yes Totals 

No (22g, 26g) 18 3 21 

Yes (18g) 2 10 12 

Totals 20 13 33 

Fisher’s exact test for association; p = 0.00016 

 

2.4 Discussion 

This study demonstrated that hypodermic needle puncture in rat caudal discs 

can lead to morphologic changes in the AF, and that induction of these changes 

depended on the size of the defect being large enough to affect disc creep behavior.  

Statistical tests found significant association between degenerative AF changes and 

needle sizes that affected biomechanical function.  Our findings reinforce recent 

opinions about the importance of impaired biomechanics in contributing to 

degeneration.84   
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 Observations of puncture size-dependent alterations in creep could be 

reconciled by histology of discs after biomechanical testing.  The striking disruption 

of the AF with 18g puncture showed NP herniation with low loads, and likely 

increased transport characteristics as well, resulting in increased effective 

permeability, k, and decreased τ.  Collapsed needle tracks found in disc histology 

effectively sealed 22 and 26g punctured AF and minimized NP loss, suggesting that 

the NP’s ability to pressurize had not been compromised.  Interestingly, the graded 

decrease in parameter D, which represents a diminishing role of swelling pressure of 

the NP, is consistent with needle size, in agreement with previous studies on partial 

and full nucleotomy of ovine discs.85  The capability for collapse of puncture wounds 

may explain why needle tracks could not be found in 22 and 26g punctured discs at 

one week in vivo.  Perhaps closely apposed tissue is more readily repaired than a 

larger defect that contains extruded NP.   

 Our results also suggest puncture size is an important determinant of AF 

degenerative changes; trans-anular injury, alone, is not sufficient.  This size-

dependence is consistent with other reported studies on the effects of AF injury.  

Three separate groups recently reported that 18g and larger hypodermic needles were 

required to induce degeneration in rabbit lumbar discs.67, 70, 72  One of these studies 

also found that performing three simultaneous 21g needle punctures or manual NP 

aspiration through a 21g needle could generate similar degrees of degeneration.67  

Their use of a 23g needle puncture for injecting an apoptosis-inducing agent had no 

effect. 
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 Biomechanically, Cowgill and colleagues reported that the force needed to 

cause NP extrusion after anular puncture of rabbit spinal discs varied inversely with 

needle size for 16, 18, and 20g needles in a graded fashion.86  While their average 

stress for herniation was 0.7 MPa for 18g punctures (as computed based on rabbit 

disc cross-sectional areas published elsewhere),87 we found NP extrusion in 18g discs 

at only 0.3 MPa creep compression.  Size, species, anatomic location,88 and loading 

profiles are several differences that may have contributed to our smaller extrusion 

loads.   

 These observations of herniation are consistent with the notion posed by 

Elliott and colleagues, that the ratio of puncture size to disc height may be a 

determining factor for altered mechanical properties.17  However, we observed no 

effect for 22 and 26g needles, where they found that smaller 27g needles led to 

significantly lower compressive, tensile, and neutral zone stiffness in rat lumbar discs.  

Outer diameters for 22 and 26g needles are, respectively, greater than and equal to 

40% of our measured average caudal disc height of 1.16mm, over the suggested 

threshold for biomechanical effect.  A large part of the discrepancy in our results may 

be due to testing procedure.  Allowing specimens to swell with extended incubation 

in PBS followed by cyclic loading prior to testing may lead to larger effects due to 

needle puncture. 

 Another study by Korecki et al. examined the effects of 14g and 25g needle 

puncture of bovine caudal discs in organ culture.89  In contrast to both studies, they 

found marked changes in disc mechanics not only for 14g but also for 25g needles, 

which are only approximately 8% of disc height.  For both puncture sizes, the needle 
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track remained evident in the tissue after 6 days and mechanical response was 

exacerbated with culture duration.  Interestingly, no changes on cell viability, water 

content, or GAG loss were observed.  Greater compressive stress (0.6 MPa time-

averaged sinusoidal loads) as well as incubation and loading treatment after puncture 

may partially account for differences.  Taken together, these data suggest that the 

immediate biomechanical stability of the injured disc, and not its performance under 

repetitive loading post-trauma, may be a good indicator the development of 

degenerative changes in the AF.   

 To the authors’ knowledge, this is the first reported study that statistically 

links the biomechanical consequences of puncture alone to biological outcome in 

vivo.  Specifically, our data suggest that immediate stability of the punctured motion 

segment may be important for the ability of the disc to retain NP and exhibit 

functional healing.  An advantage for using rat caudal discs in this study is that the 

influence of injury is less likely to be confounded by in vivo loads, which could be 

greater in the spine and in larger species.  However, this analysis is limited by not 

using the same specimens for in vivo studies and biomechanical testing.  Our rationale 

for using separate specimens was not to exacerbate the injury artificially by external 

forces.  With these experiments as a baseline, we can look more closely at these 

potential interactions between injury and loading in vivo, and potentially use 

intradiscal pressure as a way to validate our theory that pressurization of the NP is 

critical for AF homeostasis.  Another limitation is the mode of mechanical testing, 

which was greatly simplified as axial creep compression.  Motion segment bending is 

likely of equal, if not more, importance in rat caudal discs.  Having the puncture on 
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the convex side of bending would likely facilitate NP herniation.  Despite these 

limitations, results from this study provide a context for interpreting previous studies 

and a framework for the design of future experiments involving trans-anular 

procedures. 
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Chapter 3 Intradiscal Pressure Generation in a Degenerated 

Intervertebral Caudal Rat Disc Model  

The changes described in a degenerate disc are well documented, in both 

histology and viscoelastic behavior.  The pressure generation in human and large 

animal models such as the pig has also been explored, for both healthy and 

degenerate specimens; however, the intradiscal pressure generation within small 

animal models such as the caudal rat disc has long eluded researchers due to the small 

size and a lack of properly sized pressure sensors.  Our recent development of a 

miniature fiber optic pressure sensor has granted us the ability to investigate the 

intradiscal pressure within a caudal rat disc.  This study measures real physical 

observations of pressurization in the disc, between the more common rat model and 

the more physically relevant larger animal models.  This comparison between the rat 

model and the pig or human model is able to bridge the gap between the more widely 

studied basic science learned from the rat model and pressure measurements and 

physical relevance of the human disc. 

3.1 Introduction 

The intervertebral disc (IVD) is an important component in the spine, 

responsible for the much of the body’s flexibility and load bearing, specifically in the 

spine.  As a part of a spinal motion segment, the disc acts as a flexible cushion that is 

able to absorb loads place on the spine.  This load bearing property, also the 

flexibility to an extent, is dependent on the relative health and ultimately hydration of 

the disc. Concerns of disc degeneration stem from deteriorating extracellular matrix 
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(ECM) within the IVD, including disarray of the annulus fibrosus (AF), as well as 

stiffening of the nucleus pulposus (NP).   Degenerate disc disease is a condition that 

affects people all over the world, most often experienced as generic low back pain.  

The IVD is one of the few avascular parts of your body, so the cells present in the 

disc do not have sufficient nutrient flow.  In this regard, they are then unable 

maintain, remodel and rebuild the slow breakdown of the extracellular matrix as well 

as continue to support cell growth.  Researchers are still unsure the true cause of this 

degeneration, so it is important to continue to investigate how it begins before we will 

be able to prevent it.  

One critical aspect of the biomechanics of the IVD is the ability to resist 

loads.  This property stems from the gelatinous core, the NP.   The NP is able to 

generate an intradiscal hydrostatic pressure which absorbs and evenly distributes the 

load within the confines of the AF,.  Many researchers have focused on intradiscal 

pressure generation as it a critical property that is required to dispersing the load. 

Without the hydrostatic pressure generation, uneven pressure spikes are created 

within the disc and result in irregular pressures and shears that may cause injury90.  A 

loss in pressurization is also closely related to the degeneration of the disc, and may 

be one of the biggest factors towards a disc’s failing mechanics.  Early on, this 

pressure has been documented by Nachemson et al. monitoring pressure generation in 

human discs with patients in specific postures91, 92.  Other investigations have 

followed, monitoring the intradiscal pressure within pigs, rabbits and rats32, 93-95.  

Progress in these research models have linked pressure generation with 

biomechanical function.  Additionally, pressure generation has been seen to be 
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heavily dependent on hydration, which again, is associated with the breakdown of 

extracellular matrix, and therefore disc degeneration75, 96.  This pressure generation is 

a critical part of healthy disc function, and decreases greatly as degeneration occurs4.  

Compromised IDP generation has long been documented within the human disc10, 91.  

As the NP stiffens, the overall pressure generation decreases, while increasing certain 

areas with pressure spikes of uneven pressure, which lead to other problems, such as 

bulging and herniation97.   

Several different animal models have been developed for studying the 

initiating factors involved in degenerative disc disease.  While human samples 

provide greater relevance to the etiology of disc degeneration, source material is often 

limited, are suitable only for certain types of studies, and cannot provide mechanistic 

insight into the early stages of degeneration.  Many animal models have also been 

used to induce degeneration, both large animals, such as goats, cows, sheep and pigs, 

as well as small animals, such as dogs, rabbits, rats, and mice98-105.  The larger animal 

models offer a size advantage, more closely resembling the geometry of a human 

disc, and have a natural tendency to degenerate, also like human discs.  The benefit of 

smaller animal models is that they allow fast metabolic changes, and can be easily 

induced to begin the degenerative cascade.  Also, in mice, rats and rabbits, there are 

still in tact notochordal cells, which are lost during adolescence in humans.  The loss 

of these cells has also been speculated to be involved with the onset of degeneration2.  

Additionally, smaller animal models are cheaper and easier to work with.  A variety 

of methods have been used to induce degeneration, including axial loading, injection 

of proteolytic enzymes, incisions and annular puncture99.  Our lab has documented 



www.manaraa.com

 

 33 
 

the use of 18g percutaneous needle puncture in a caudal rat disc to induce disc 

degeneration within 4 weeks105.  One drawback of all animal models has been the 

upright posture of the human spine; however, one group also investigated this, by 

amputating the forelimbs of rats and inducing an upright posture106.  

While the direct mechanisms that allow these methods to trigger the 

degenerative cascade is still yet unclear, these models result in a definite breakdown 

in the extracellular matrix of the disc, specifically a loss of hydrating ability.  While 

the mechanism for proteolytic enzymes such as chondroitinase ABC, the goal is clear, 

to cleave the GAG chains on the proteoglycans and reduce swelling capacity.  Other 

efforts have been made to discover more detailed steps in this degenerate cascade, 

such as monitoring microscale shear in an annular puncture using confocal 

microscopy107.  Other theories that induce breakdown suggest that the annular 

puncture or tear reaches a critical size, in which the nucleus is unable to pressurize, 

and also disrupt annular fiber properties99, 108.  Direct mechanisms of degeneration are 

still being understood, however, it is clear that the breakdown results in a lowered 

swelling capability caused by loss of proteoglycans, resulting an inability to 

pressurize, thus our focus is on the intradiscal pressure.   

In this study, we use our previously reported methods to induce degeneration 

in caudal rat discs.  Using this, along with a previously developed custom miniature 

fiber optic pressure sensors, we will investigate intradiscal generation during 

loading95, 97.  We hypothesize that the degenerate group will have a reduced ability to 

generate an intradiscal pressure, while the control, normal group will have a greater 

ability than the diseased group.  Additionally, we also hope to establish a relationship 
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with the intradiscal pressure and an applied external pressure.  This will help future 

understanding of the behavior of the disc. 

 

3.2 Materials and Methods 

3.2.1 Animal Surgeries 

Skeletally mature Sprague-Dawley retired male breeder rats (6-9 month old) 

(Harlan Laboratories, Indianapolis, IN)  were anesthetized using vaporized isoflurane 

and punctured in the caudal 4-5 IVD using an 18g hypodermic needle, into the center 

of the disc.  Prior to puncture, the disc was fluoroscopically visualized using a 

Fluoroscan III mini C-arm (Hologic, Northbrook, IL).  The diameter of the disc was 

measured and the needle was inserted into the center of the disc, verified via x-ray.  

The rats were allowed normal food and water and cared for by the Central Animal 

Research Facility at the University of Maryland, College Park, for an additional 8 

weeks.  Following our previous work on a degenerative puncture model in caudal rat 

discs105, the rats were euthanized after 8 weeks, and harvested for the c3-4 and c5-6 

motion segments, healthy control and adjacent degenerate discs respectively.  All 

procedures were approved by the Institutional Animal Care and Use Committee at the 

University of Maryland, College Park.   

 

3.2.2 Pressure Measurement 

Soft tissues were carefully removed from around the vertebrae and potted into 

custom fixtures using polymethyl methacrylate (PMMA) dental cement (Bosworth 
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Company, Skokie, IL).  This fixture was then mounted onto a Bose-Electroforce 

materials testing system (LM-1, Bose Corp, Eden Prairie, MN).  Again, using 

fluoroscopic verification, we inserted a custom fiber optic Fabry-Perot pressure 

sensor through a 22g hypodermic needle guide into the midpoint of the disc.  In brief, 

the Fabry-Perot interferometry based fiber optic pressure sensor has a diameter of 

363µm and was calibrated in a custom pressure chamber using a semiconductor 

pressure transducer (Kulite Semiconductors, Leonia, NJ) 95, 97. 

 

3.2.3 Loading Conditions 

Both healthy and degenerate disc groups (n=5) were subjected to the same 

mechanical testing.  The specimens were first preloaded with 0.05 MPa to establish a 

reference configuration similar to that of the caudal disc in vivo.  The disc under the 

tare load is then considered the zero stress point.  Each motion segment was subject to 

30 second step loads of 0.05, 0.25 and 0.45 MPa with 30 seconds of rest (0 MPa) in 

between.  Figure 3.1 illustrates the loading scenario experienced by each disc.  

Following the last rest period, the disc is then loaded again to 0.45 MPa for 300 

seconds to observe the creep response after step loading. Intradiscal pressure 

(USB4000/SpectraSuite, Dunedin, FL), displacement and applied load (WinTest, 

Bose Electroforce, Eden Prairie, MN) were all recorded at 1 Hz during the 

experiment. 
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Figure 3.1 Shows the loading scenario for all of the motion segments.  Discs were 
initially loaded with 0.05 MPa applied as ambient normalizing stress.  This was 
then considered zero stress point.  The discs were then loaded with 30 second 
increments of 0.05, 0.25 and 0.45 MPa with 30 seconds of rest in between.  After 
the last rest period, an additional 0.45 MPa was loaded for 300 seconds to 
observe the creep response following the step loading.   

3.3.3 Statistics 

IDP measurements at each loading step, as well as the slope of the trend lines 

were analyzed using an independent-sample T test (SPSS 14.0, IBM, Somers, NY). A 

P-value of less than 0.05 was used to represent statistically significant differences.   

 

3.4 Results 

Each step load applied to the motion segment generated an immediate 

increased response within the NP to increase hydrostatic pressure and react to the 

imposed external stress. Figure 3.2 shows a representative pressure curve during the 

loading regimen.  At the beginning of each step load the pressure takes a slight 

ramping approach to achieve the desired pressure.  A similar lagging effect is seen 
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during the relaxation period as it takes a few seconds to reach the resting pressure.  

These rounded responses are likely due to the property of the tissue, as it takes time 

for the biological environment to react to the applied stress. Additionally, there is a 

relaxing of the intradiscal pressure when the applied stress was held for 5 minutes. 

This healthy disc creep response was later analyzed using viscoelastic models against 

the degenerate counterpart.  We also established that the ambient intradiscal pressure 

for a healthy disc at simulated rest was 93±4 kPa.  This value was obtained under the 

application of 0.05MPa axial stress on the disc, an accepted pressure used as a tare 

load to represent stress imposed by the body under physiologic conditions. 

 

Figure 3.2 Intradiscal pressure was measured using a custom fiber-optic 
pressure sensor at 1 Hz. This is one sample degenerate rat disc, loaded under the 
loading conditions.  Note the steps in intradiscal pressure while the tissue itself is 
experiencing the same step loads. 
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Figure 3.3 shows the each step load in bar graph format to better illustrate the 

significance changes in response between the healthy and the degenerate groups.  At 

0.25 and 0.45 MPa, the healthy group generated a significantly higher intradiscal 

pressure than the degenerative counterpart (p > 0.05).  These represent a lowered 

ability to pressurize under loading, a critical job of the disc when absorbing and 

dispersing load.  All values are represented in Table 3.1. 

 

 

Table 3.1 Summary of the measured intradiscal pressures and the corresponding 
applied stress.   

Applied Stress 
(MPa) 

Degenerate IDP 
(MPa) 

Healthy IDP 
(MPa) 

p-value 

0.05 0.0696 (±0.0129) 0.0834 (±0.0082) 0.374 

0.25 0.2314 (±0.0401) 0.3674 (±0.0342) 0.049 

0.45 0.3541 (±0.0272) 0.6165 (±0.0879) 0.041 

Slope 0.8225 (±0.1723) 1.3968 (±0.3904) 0.034 

Standard deviation is expressed in parentheses following the measured pressure.   
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Figure 3.3 Each of the step loads shown is represented in bar format to show the 
difference between healthy and degenerate groups.  Paired t-tests were 
performed to compare IDP generated between degenerate (punctured) discs and 
the adjacent control (non-punctured) discs.  There are significant differences 
between IDP at 0.25 and 0.45MPa.  Additionally, the difference in dimensionless 
slope was also determined to be statistically significant. * Shows significance (p < 
0.05).   
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The relationship between applied force and generated intradiscal pressure was 

characterized using a linear approximation defined by a slope, as shown in Figure 3.4.  

Intradiscal pressure was observed to be linearly related to the applied stress, for both 

the healthy as well as the degenerate groups.  However, the degenerate group had a 

diminished capability to generate pressure compared with the healthy group.  A linear 

fit applied to define the relationship between applied and generated pressure yielded 

good results for both healthy and degenerate groups.  The inability to pressurize 

becomes more and more drastic as the applied stress increases. 

 

 

Figure 3.4 This figure shoes the relationship between the intradiscal pressure in 
the NP and the applied pressure on the disc.  IDP generated was plotted against 
the stress applied for both healthy and degenerate discs.  These relationships 
were approximated by linear functions.  It shows that the healthy disc is much 
more responsive to external loads, and is able to generate a higher intradiscal 
pressure as a response, given the same loading conditions. The change in the 
slope exhibited by degenerate discs indicates a compromised ability to 
pressurize.   
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When compared, this slope also yields a statistically significant difference 

between healthy and degenerate groups.  The difference in the linear slope 

relationship between IDP and applied stress was 1.40 in healthy discs and 0.82 in the 

degenerate discs.  All linear approximations obtained yielded R2 values greater than 

0.95.   To compare the healthy and the degenerate groups, we created a ratio of the 

healthy:degenerate intradiscal pressure generated at the 0.45 MPa step was 1.71.  This 

value will allow us to compare our results with other similar studies, and better define 

the difference between our experimental and control groups.   

Compressive displacements of the discs were examined at each step load as 

well as the five minute hold at the end. The time-dependent creep at each step was 

fitted to Cassidy’s fluid transport of the disc model to determine a pattern at each 

step109. This is a viscoelastic model created for the disc that is based on the fluid flow 

properties in and out of the disc, dividing the disc into contributions of the NP, AF, 

and the endplates, represented by D, G and k respectively.  We have previously used 

this model to discover changes in the viscoelastic properties of the disc as a result of 

changing load histories, and has proven to be more sensitive and more physically 

relevant than the stretched exponential model and the standard linear viscoelastic 

solid model97.  The healthy group for each step was examined using the viscoelastic 

model and compared with the degenerate pair, and no significance was found.  

Results were reported in Table 3.2.  There was too much variation and no separation 

between the healthy and degenerate groups for any of the coefficients. Absolute 

displacements were slightly higher for degenerate discs (Figure 3.5); however, these 
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were also not statistically significant. While initial disc heights were not taken, the 

degenerative discs have shown consistency in presenting a decreased disc height.  If 

this displacement may be presented as strain, the smaller initial disc height may 

translate to a larger change in strain, which may result in a more statistically 

significant change in strain between healthy and degenerate discs. 
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Table 3.2 The coefficients fitted from the Cassidy fluid transport viscoelastic disc 
model. 

0.05 MPa (10 sec) 0.25 MPa (10 sec) 0.50 MPa (10 sec) 0.50 MPa (5 min)

D Degen 3.050 ± 0.99 1.208 ± 0.23 1.556 ± 0.45 2.208 ± 0.77

Normal 2.740 ± 0.94 1.025 ± 0.22 1.436 ± 0.59 2.602 ± 0.92

G Degen 0.00645 ± 0.0003 0.00429 ± 0.0012 0.00420 ± 0.0006 0.00113 ± 0.0002

Normal 0.00502 ± 0.0022 0.00289 ± 0.0004 0.00365 ± 0.0014 0.00169 ± 0.0005

k Degen 0.1028 ± 0.0511 0.2372 ± 0.0523 0.1242 ± 0.0229 0.0054 ± 0.0014

Normal 0.1478 ± 0.1162 0.3074 ± 0.1112 0.1663 ± 0.0710 0.0055 ± 0.0014

Step Loads
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Figure 3.5 Plot of displacements achieved at each loading step.  The normal 
group shows slightly less displacement under compression than the degenerate 
group, but differences were not statistically significant 
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3.4 Discussion 

The ability to resist load is dependent on the generation of hydrostatic 

pressure within the NP.  This experiment has shown a direct relationship with the 

intradiscal pressure and the load placed on the motion segment itself.  There have 

been few examples of direct intradiscal measurements in rat discs, and this 

experiment allows direct comparison with other animal models, as well as human 

findings.  The direct measurement of intradiscal pressure allowed for observation of 

the immediate response of the disc and the hydrostatic pressure generated.  The small 

lag in response showed that the response is not immediate after a load is place, and it 

takes time for the pressure to build.  A small creep or relaxation was seen in the 

pressure as well after the applied pressure was held for 5 minutes.  This would be 

consistent with the water collected initially in the extracellular matrix being released 

back into the rest of the body. 

 We discovered the ambient, or intrinsic resting pressure for the caudal disc to 

be 0.093 MPa.  This value is an important finding, as it can be compared to and used 

as a baseline for other animal models.  This value is relatively similar to the healthy 

resting pressure of a porcine lumbar disc, which was seen to be 0.081 MPa32.  A 

healthy disc in a human sample is much more difficult to come by, and a ambient 

pressure value has not been obtained.  Given the porcine intrinsic intradiscal pressure, 

it is good to see a similar value present.  Although it does not validate our value, it 

allows similar comparison to be made between animal models. 

 As shown in our previous experiments, an 18g needle puncture into the center 

of the disc induces degeneration in a rat tail model.  Using this degeneration rat 
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model, we are able monitor the behavior of the degenerate model compared to a 

healthy one. In this experiment, the degenerate model allowed us to track the 

intradiscal pressure of a healthy hydrated disc and compare it to a diseased one.  As 

seen in Figure 3.4, the healthy disc responds to the applied load, however, the 

degenerate disc shows a decreased ability to pressurize.  The compromised ability to 

pressurize in the rat caudal disc puncture model is likely due to the breakdown of the 

extracellular matrix in both the NP and the AF.  This breakdown of function is in 

large part due to a decrease in tissue hydration, as a result from the degeneration.  In 

each step load, the healthy disc showed greater pressurization than the degenerate 

group.  The larger the applied load, the greater the separation between the groups. 

The relationship between pressure generated and pressure applied is an 

interesting one.  This experiment establishes a linear relationship for both a healthy 

rat disc as well as a degenerate rat disc.  We can use this linear approximation and 

slope to predict the pressure generation within the disc, given an applied axial load.  It 

is again seen that the degenerate model shows a lack of pressurization when 

compared to the healthy disc.  The slope representing the degenerate group is 

significantly shallower than the healthy group, indicating a lesser response.  This lack 

of response is likely due to the breakdown of the extracellular matrix and therefore an 

overall loss of ability to fully hydrate.  The disarray experienced in the matrix 

incorporates a major loss of proteoglycans, which is the main hydrophilic molecule 

that attracts and helps the disc maintain water and swell.  This inability to swell 

parallels the inability to generate pressure, and therefore cushion loads.  



www.manaraa.com

 

 46 
 

Another way to compare the healthy and degenerate groups is to establish a 

ratio of intradiscal pressure generation at a given step load.  At the 0.45MPa step 

load, we have a healthy:degenerate pressure ratio of 1.71.  This is the same order of 

magnitude found in the porcine disc, using an lumbar endplate injury model, which 

had a healthy:degenerate intradiscal pressure ratio of 3.6532.  Any variation between 

the two values, can be due to a variety of factors, two of which are most likely.  The 

deviation can firstly be due to the difference between species, spinal location (lumbar 

vs caudal), and pure size.  Additionally, the degree of degeneration induced by the 

endplate injury versus an annular puncture can also produce varying results.  What is 

more encouraging is the comparison to human samples.  Adams and colleagues 

discovered a healthy: degenerate pressure ratio in human discs to be 1.45, with 

Thompson grading of I:IV10.  This is remarkably similar to our ratio of 1.71.  

Although not conclusive alone, when combined with our histological images105, these 

observed intradiscal pressures make a strong case in being an incredibly viable animal 

model for degenerate discs.  It suggests that our rat caudal annular puncture model 

can be compared directly with grade IV degenerate human discs.  Our results suggest 

that there may be important parallels in the biochemical and structural changes in the 

NP and AF between human disc degeneration and injury-induced degeneration in 

rats. 

It is surprising that the overall creep response in each step of the loading 

regime did not yield any discernable difference between healthy and degenerate.  The 

stretched exponential model and the standard linear viscoelastic solid models are both 

standard models used to describe viscoelastic behavior in biological tissue, including 



www.manaraa.com

 

 47 
 

in IVDs.  In our previous work, we have used both of these, as well as the Cassidy 

fluid transport model to identify small changes in the creep response of isolated 

motion segments97.  While the stretched exponential model had a hard time 

identifying small changes in creep response, the standard linear solid and the fluid 

transport model, made specifically to describe disc behavior, have both been effective 

finding small behavioral differences.  All three models were unable to identify a trend 

in each of the three step loads as well as the final held load in terms of displacement, 

creep curve.  The overall displacement showed by the motion segment in Figure 3.5, 

did accumulate a modest change in absolute displacement.  Since this displacement 

measurement was taken by the material testing machine, some of the overall strain 

may be due to compression of the vertebrae; however, the majority of the 

displacement can be attributed to the compression of the disc.  The degenerate discs 

showed a slightly larger willingness to deform as compared to the healthy discs.  

Consistent with the pressure generation, the healthy discs were able to pressurize and 

better resist the load, while the degenerate group absorbed less of the load and 

transferred that applied stress into a greater absolute displacement.  Although the 

healthy control group did not yield a significantly different displacement from the 

degenerate group, it indicates a trend that the mechanism of load support has changed 

with degeneration. 

Our previous experiments have shown through histological examination and 

biomechanical analysis, that we are able to induce degeneration in a rat caudal disc 

using a trans-annular radiographically guided 18g needle puncture.  This experiment 

monitored the intradiscal pressure generation of a degenerate group induced using 
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this method, and compared it with an adjacent normal control group.  Results 

conclusively show that the degenerate group shows a compromised ability to 

pressurize during loading, and this lack of pressure response increases as the applied 

load increases.  We identified a linear relationship between generated intradiscal 

pressure and applied stress, which also shows the deficiency of the degenerated discs.  

Additionally, the ratio comparing healthy to degenerate pressures closely resembles 

that observed in human discs, comparing grade I:IV discs.  And although the 

displacement changes were not significant, they support the idea of a broken down 

extracellular matrix and compromised mechanics of the degenerate discs.  Overall, 

these results show that our degeneration model can be accurately used as a successful 

animal model to represent human disc degeneration.  Caution must still be taken; 

while histological and biomechanical evaluation suggests similarities with human 

degeneration, it remains unclear if mechanisms leading to changes are the same. 
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Chapter 4 Role of Load History in Intervertebral Disc 

Mechanics and Intradiscal Pressure Generation2 

Thus far, efforts have slowly begun to hint at the omnipresent hydration factor 

that influences all aspects of disc function, particularly in the NP.  Other studies have 

hinted at the impact of load history as an unknown influencing factor in their 

experiments, so this study is meant to simplify the idea of prior loading and discovery 

the real impact of this history.  Hydration in the disc is changed after loading, thus 

changing the loading response of the disc in future compression.  This idea is 

explored through the viscoelastic creep response, and then subsequently direct 

measurement of the intradiscal pressure.  This investigation is aimed to show that this 

minor change in past loading makes a tangible difference in future behavior of the 

disc. 

4.1 Introduction 

The multiphasic nature of the intervertebral disc (IVD) plays a key role in its 

time-dependent and spatially heterogeneous mechanical behavior.  Although tissue 

hydration is broadly accepted as a mechanism that governs soft tissue mechanics, its 

contribution to the IVD has not been fully explored.  Grossly, it has been shown in 

various tissues, that changes in hydration affect viscoelastic behavior 75, 96, 110-115.  

While no comprehensive set of tests has been performed in any individual system, 

these studies show that effects are strongly dependent on loading parameters and 

                                                 
2 As published in D Hwang, AS Gabai, M Yu, AG Yew, and AH Hsieh. Role of load history in 
intervertebral disc mechanics and intradiscal pressure generation. Biomechanics and modeling in 
mechanobiology (2011). [Epub ahead of print]. 
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tissue type.  On the microstructural level, tissues exhibit decreased permeability with 

dehydration 116, 117 due to consolidation of the extracellular matrix (ECM) 118, 119.  

Crosslinking and degradation of the ECM has also been shown to play a role in 

modulating the disc’s viscoelastic behavior 120.  Biologically, altering tissue hydration 

may also initiate osmoregulatory functions of cells in situ, independently of changes 

in tissue microstructure 121-123.  Thus, hydration plays a significant role in IVD 

mechanobiology by generating responses by changing both osmolarity and cell shape.  

Since decreased water content and altered disc mechanics are mutually associated 

with degenerative disc disease (DDD), understanding their relationship may also 

provide insight into disease etiology.   

 For the IVD, the intradiscal pressure (IDP) is a parameter that represents the 

aggregate function of the three subregions: nucleus pulposus (NP), annulus fibrosus 

(AF), and cartilaginous endplate (EP).  Subtly distinct from the overall stress-strain 

behavior of the disc, IDP is a direct quantitative indicator of the internal 

pressurization of the NP.  Consequently, IDP is sensitive to changes in swelling of NP 

tissue, tension from bulging annular lamellae, and EP permeability.  These 

mechanisms are supported, in part, by the observed water loss of the disc under 

compression is mostly due to decreased hydration in the NP rather than the AF 124.  

The role of loading on IDP has been well documented by Adams and colleagues 

through stress profilometry studies using strain gauge-based pressure transducers.  

These studies have shown that the ability for IDP to be generated is strongly 

dependent on posture and load distribution among subregions in the disc 10, 125, 126.  
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With higher loads and greater water loss, load is transferred from the NP to the AF, 

and stress peaks are created in throughout the AF. 

 During compressive creep loading, commonly used to represent the time-

averaged effect of spinal loading, interstitial fluid is expressed from the disc in a 

spatially- and temporally-varying manner.  The re-distribution of water is 

complicated by multiple flow paths, the structural interactions among disc subregions, 

shifts between intra- and inter-fibrillar compartments, and consolidation of ECM 

molecules.  For human discs, it has been previously shown that in the neutral position 

intradiscal pressures decrease up to 15% after several hours of static creep 

compression at physiologic levels of force 10.  However, spinal loads are seldom 

steady, considering the different activities that an individual might undertake.  

Because of these complexities, we hypothesize that the IDP cannot be predicted based 

solely on applied stress, but also governed by prior loading. 

 In this study, we characterize the extent to which load history contributes to 

disc mechanics overall, and particularly to the IDP.  We chose to utilize rat caudal 

discs because of their relevance as animal models in mechanobiology research, and 

because of our ability to measure IDP in these discs with a previously developed fiber 

optic pressure sensor 95.  In order to establish an effect of load history, we chose first 

to employ a static load to simulate a time-averaged stress and circumvent potentially 

confounding factors associated with frequency-dependence of disc mechanics.  Using 

three different analytical models, we characterized how different load histories 

influence aggregate creep behavior, physical elastic and viscous parameters, as well 

as zonal mechanics of the disc, and separately measured IDP directly using analogous 
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patterns of load history profiles.  Results show that IDP generation is greatly affected 

by prior loads.  Even relatively short durations of static loading resulted in dramatic 

alterations in subsequent IDPs generated.  In contrast, changes in the gross mechanics 

of the disc were detectable only after long durations of creep compression.  

Therefore, while the disc provides consistent mechanical function, the internal 

stresses distributed through the disc are strongly dependent on load history.  This may 

have significant consequences on IVD cell mechanobiology. 

 

4.2  Materials and Methods 

4.2.1 Specimen preparation 

Skeletally mature (6-9 month old) Sprague-Dawley rats were euthanized using 

CO2 asphyxiation according to protocols approved by the Institutional Animal Care 

and Use Committee at the University of Maryland, College Park.  Caudal motion 

segments (c4-5 and c6-7) were isolated, and surrounding tissue carefully removed.  

Specimens for Experiment 1 were placed in frozen storage (-20ºC)  until use, at which 

time samples were thawed in a protease inhibitor cocktail (PBS containing 1mM 

EDTA-disodium salt, 1mM EDTA-tetrasodium salt, 5mM of Benzamadine, 10mM 

N-Ethylmaleimide, 1mM Phenylmethylsulfonyl fluoride) at room temperature for 

approximately 2 hours.  All chemicals were obtained from Thermo-Fisher Scientific 

Inc. (Waltham, MA).  This protease inhibitor solution was used to minimize 

enzymatic degradation of the ECM during thawing and testing, as well as saturate the 

disc so that discs uniformly start in a fully swelled configuration prior to testing. 

Specimens for Experiment 2 were isolated and used fresh for testing.  Radiographs 
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were obtained using an X-ray cabinet system (Faxitron Corp, Buffalo Grove, IL).  

Images were scanned from the radiographic film and analyzed using ImageJ to 

measure disc height and diameter, within a standard error of ±3.2% and ±1.2%, 

respectively.  The motion segments harvested from the rat tail were carefully cleaned 

of tissue (muscle, tendons and ligaments) from the vertebral portion of the motion 

segments.  Surrounding tissues were removed to minimize confounding effects on 

applied stress and to facilitate mounting in fixtures.  Some soft tissue surrounding the 

disc itself was left in place, to minimize tissue dehydration. The motion segment was 

then potted into custom fixtures using poly(methyl methacrylate) dental cement 

(Bosworth Company, Skokie, IL) and mounted onto a Bose-Electroforce materials 

testing system (LM-1, Bose Corp, Eden Prairie, MN).  Two sets of mechanical tests, 

designated as Experiments 1 and 2, were performed as described below.   

 

4.2.2 Experiment 1 – Load history effects on compressive creep behavior 

 The purpose of Experiment 1 was to determine the effects of load history on 

the gross mechanical behavior of motion segments.  For these tests, a reference 

configuration was set by applying a ramp compressive stress to 0.05 MPa over 2 

seconds, and holding the displacement fixed for 500 seconds.  Pilot studies had 

shown that this duration allows stress relaxation to reach equilibrium in all 

specimens.  Since samples were previously frozen and fully saturated in protease 

inhibitor solution for Experiment 1, we used a low value of 0.05 MPa as a resting 

stress to generate a consistent degree of hydration across samples.  For each 

specimen, stress relaxation to an equilibrium value was confirmed, and the force 
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tared.  Tissues were then subjected to sequential static creep compressive stresses, 

consisting of a Prestress Phase followed by an Exertion Phase (Figure 4.1).  The 

Prestress Phase varied from group to group in terms of compressive stress values and 

durations.  Seven groups were studied (n=6), defined by combinations of three 

different compressive stresses (0.1, 0.3, 0.5 MPa) and two different durations (2,000 

and 10,000 seconds) and including a no Prestress control (held without additional 

load for 10,000 seconds).  Based on our pilot studies, it was determined that creep 

strain approximately reached equilibrium after 10,000 seconds, and 2,000 seconds 

was approximately the duration to reach one-half of the ‘steady-state’ strain.  All 

calculations for applied stress were performed using the undeformed cross-sectional 

area of caudal discs, computed using radiographic measures of disc diameters and 

assuming circular cross-sections.   
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Figure 4.1 Schematic of the loading regimens used to explore the effect of load 
history on disc mechanics.  A reference configuration was set after equilibrium 
was reached using stress relaxation at 0.04 MPa, at which point the strain was 
tared and time set to zero.  Various combinations of applied compressive stress 
and duration were used during the Prestress Phase.  The Exertion Phase 
consisted of a single total stress-duration condition that was identical for all 
groups regardless of load history.  Results presented in this study represent the 
response of motion segments for the Exertion Phase only. 

 

During the Exertion Phase displacements (recorded at 1Hz) were used for 

subsequent creep analyses and for comparison among the groups with distinct load 

histories (i.e. different Prestress Phases).  This phase was identical for all groups, 

including the no Prestress control, and consisted of a final total applied compressive 

stress of 1.0 MPa held for 6,000 seconds.  Due to the long duration of the test, motion 

segments were fully submerged in protease inhibitor solution for the entire 

experiment.  Since the forces applied to discs were low, introducing saline-soaked 

gauze would likely generate load artifact, and spraying with saline would provide an 
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unsteady hydration environment.  Moreover, Pflaster et al. suggests that the disc is 

“exposed to a fluid bath” during in vivo conditions, and further results indicate that a 

wrap or spray technique would not provide sufficient external fluid “available” for the 

disc to fully swell, thus the submersion technique was used 127. 

 

4.2.3 Analysis of motion segment mechanics 

 As a way to quantify the effect of load history on compressive creep behavior, 

we used three analytical models to compare motion segments during the Exertion 

Phase, after having been subjected to different load histories in the Prestress Phase.  It 

is important to note that these models are 1-D representations of creep, and do not 

consider complex geometries, material properties, or phenomena that are present in 3-

D.  The first is the stretched exponential equation, which has previously been used to 

describe changes in disc mechanics arising from mechanical or surgical 

manipulations that alter transport characteristics across the disc.80, 81, 105  Strain is 

given by 
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where two parameters, β (stretched parameter) and τ (time constant), are used to 

describe the shape of the exponential increase in compressive strain over time, which 

at equilibrium is predicted to be ε∞. 

 The second is a lumped parameter rheological model, variations of which 

have also been used with good results for describing creep behavior of IVDs.  

Viscous and elastic coefficients are quantified separately to provide physical 
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interpretation of the response, but these are averaged over the entire disc and possess 

little mechanistic basis.  The specific formulation we selected is the standard linear 

viscoelastic solid composed of a Maxwell fluid (spring in series with dashpot) in 

parallel with a Hookean spring.  For a constant stress, the strain is expressed by 
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where E1 and µ represent the elastic and viscous parameters, respectively, in the 

Maxwell element, while E2 denotes the spring in parallel and represents the long-term 

effective modulus. 

 The third is a model that was developed to describe fluid transport across the 

permeable EP due to applied loads modified by a linear dependence on consolidation 

of the NP and elongation of the annular lamellae.82  In this formulation, strain is 
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where the parameters D, G, and k can be considered to arise from physical effects due 

to changes in osmotic pressure with NP consolidation, time-dependent changes in AF 

tension, and the permeability of the EP.  Experimental input parameters include the 

initial disc height, hi, applied creep load, σ0, and estimated resting nucleus osmotic 

pressure P0 = 0.1 MPa.   

 In all cases, the strain used in these analyses was defined as engineering 

strain.  Values for unknown parameters were obtained for each specimen by curve 

fitting the Exertion Phase of the experimental data with each equation (1-3) using the 

Curve Fitting Toolbox, part of the MATLAB software package(The Mathworks, 

Natick, MA). A unique best fit was found using the nonlinear least squares method. 
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While the solution was dependent on starting conditions, this was the only fit that 

resulted in an R2 >0.95. 

 

4.2.4 Experiment 2 – Load history effects on intradiscal pressure 

Experiment 2 was performed expressly for measuring the effects of load 

history on IDP generation.  The general mechanical testing scheme is the same as that 

of Experiment 1, but because of the presence of a fiber optic pressure sensor, applied 

compressive stresses and durations were adjusted to ensure that displacements were 

small enough not to be influenced by or incur damage to the sensor during testing.  

After loads were tared, the Prestress Phase consisted of two different compressive 

stresses (0.05 and 0.3 MPa) held for 1800 seconds, followed by an Exertion Phase of 

0.5 MPa for 900 seconds.  During the loading scenario, the inserted pressure sensor 

would measure the intradiscal pressure, which arises from both fluid and solid phase 

stresses acting on the diaphragm of the sensor tip.   

 

4.2.5 Intradiscal pressure measurements 

Miniature Fabry-Perot fiber optic pressure sensors were fabricated as 

previously described (Figure 4.2) 95.  Briefly, two polymer layers (NOA 68, Norland 

Products, Cranbury, NJ) were placed over the cross-section of a capillary tube that 

had been cleaved flat.  The polymer layers were cured and then sputtered with an 

approximate 800µm layer of 50:50 Ni-Ti (verified using topography mapping system, 

Polytec TMS-1200).  Two more protective layers of polymer were added and cured.  

This tube was then mounted on bare fiber optic core with an approximate cavity 
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length of 30 µm and glued in place; and a thin protective sleeve was added to 

strengthen this interface.  Each pressure sensor was then calibrated using a custom 

pressure chamber and a semiconductor pressure transducer (Kulite Semiconductors, 

Leonia, NJ).  We have previously shown using a custom-made calibration chamber 

that the repeatability and linearity of the sensor are excellent 95, and the sensors we 

used in this study exhibited precisions within 3.7%. 

 After the motion segment was mounted in the testing system, a micrometer 

stage was used to insert a modified 22 gauge needle trans-annularly to one-half the 

diameter of the IVD.  The fiber optic pressure sensor was then inserted into the NP 

through the needle.  After insertion, the pressure sensor was held fixed while the 

needle was retracted, leaving only the pressure sensor in the NP.  During the 

experimental loading regimen, IDPs were measured using a spectrometer (USB4000, 

Ocean Optics, Dunedin, FL) and data sampled using SpectraSuite software (Ocean 

Optics, Dunedin, FL) at 1 Hz, along with the displacement and force values from the 

Bose-Electroforce materials testing system.   
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Figure 4.2 Micrographs of the diaphragm-based Fabry-Perot micro optical 
sensor used for measuring IDP in rat caudal discs.  The optical fiber is sputtered 
with a reflective layer (b) and polymer coated (c), before being inserted into 
capillary tubes capped with a polymer diaphragm (a).  The finished pressure 
sensor can be inserted through a 22g hypodermic needle.  The coin  
(Ø = 17.91mm) is shown for size reference. 
  

The investigation of the effects needle size on degeneration has been well 

documented, showing a general trend of larger needle to disc height ratio as being 

detrimental toward disc health 128.  Our lab has previously explored the effects of 

needle size on biomechanical function and subsequent occurrence of degeneration 

(Hsieh, Hwang et al. 2009).  Results conclusively demonstrated that trans-annular 

punctures into the a rat caudal disc by a 22g needle neither compromised mechanical 

behavior during creep loading, nor caused any degenerative changes.  Our pressure 

sensor has a diameter of 363µm as compared to approximate disc diameter of 5mm 

and disc height of 1.2mm.  This is roughly a 30% ratio of intrusion to disc height, 
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which is believed to be within a safe range 128.  Based on these data, the use of a 22g 

needle to guide the insertion of our pressure sensor was expected to have minimal 

impact on disc mechanics. 

 

4.2.6 Statistical analysis 

All data were confirmed to be normally distributed.  For Experiment 1, 

parameters obtained from curve fitting Equations 1-3 to the data were compared using 

one-way ANOVA among groups with different load histories.  For Experiment 2, 

measured and computed stresses were compared using one-way ANOVA, as well.  

Pairwise comparisons were all performed using Tukey’s HSD post hoc tests.  

Analyses were performed using SPSS 14.0 (SPSS, Chicago, IL) with critical 

significance levels set to α = 0.05. 

 

4.3 Results  

4.3.1 Load history effects on compressive creep behavior 

 Analyses of Exertion Phases after varying Prestress treatments revealed that 

the mechanical behavior of the motion segment was not markedly affected by load 

history, but that there were subtle changes in elastic and viscous properties arising 

from alterations in function of the disc’s subregions.  Specifically, compressive 

strains could be described by similar exponential relations, essentially independent of 

Prestress treatment.  However, specimens with a greater starting hydration at Exertion 

possessed significantly stiffer and more viscous coefficients.  These appeared to be 
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related to changes in contributions from the NP, AF, and EP to fluid transport.  Table 

4.1 lists measured endpoint strains following Exertion load in Experiment 1; all 

strains were comparable, particularly after 10,000 seconds. Values obtained from 

curve fits in Experiment 1 are listed in Table 4.2. 

 

Table 4.1 Measured strain values at the end of the Exertion Phase of Experiment 
1 

        measured strain, ε   

    2,000s 10,000s  

 

P
R

E
S

T
R

E
S

S
 

0 MPa   0.40 ± 0.05  

 0.1 MPa  0.36 ± 0.01 0.40 ± 0.07  

 0.3 MPa  0.37 ± 0.03 0.37 ± 0.06  

  0.5 MPa   0.43 ± 0.02 0.43 ± 0.03   

 

 Compressive creep strain of motion segments was well-described by the 

stretched exponential equation (Equation 1, Figure 4.3), yielding r2 > 0.99.  Curve fits 

to the data yielded values for β and ε∞ that were not statistically different among the 

various combinations of preload magnitude and duration (p > 0.05).  Most pairwise 

comparisons for τ were not statistically significant (p > 0.2), with the lone exception 

being a significant difference between 10,000 sec, 0.5 and 0.3 MPa Prestress groups 

(p < 0.05).  
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Table 4.2 Parameters obtained from curve fits of Equations 1-3 to Exertion 
Phase data of Experiment 1 

    Equation 1 

  β  εinf (mm)  τ (s) 

  2,000s 10,000s   2,000s 10,000s   2,000s 10,000s 

P
R

E
S

T
R

E
S

S
 0 MPa  

0.76 ± 

0.07   

0.41 ± 

0.05   

1316 ± 

299 

0.1 MPa 
0.87 ± 

0.05 

0.84 ± 

0.05  

0.37 ± 

0.01 

0.41 ± 

0.07  

1308 ± 

97 

1454 ± 

335 

0.3 MPa 
0.88 ± 

0.03 

0.73 ± 

0.10  

0.37 ± 

0.03 

0.42 ± 

0.07  

1392 ± 

209 

1054 ± 

110 

0.5 MPa 
0.82 ± 

0.21 

0.75 ± 

0.03   

0.43 ± 

0.02 

0.40 ± 

0.03   

1260 ± 

564 

1671 ± 

83 

          

    Equation 2 

  E2 (MPa)  E1+E2 (MPa)  µ (MPa.s) 

  2,000s 10,000s   2,000s 10,000s   2,000s 10,000s 

P
R

E
S

T
R

E
S

S
 0 MPa  

2.48 ± 

0.31   

4.16 ± 

0.71   

1758 ± 

539 

0.1 MPa 
2.46 ± 

0.06 

2.28 ± 

0.38  

3.74 ± 

0.20 

2.94 ± 

0.50  

1284 ± 

232 

834 ± 

235 

0.3 MPa 
1.91 ± 

0.14 

1.73 ± 

0.33  

2.62 ± 

0.21 

1.92 ± 

0.41  

788 ± 

106 239 ± 83 

0.5 MPa 
1.18 ± 

0.04 

1.26 ± 

0.10   

1.50 ± 

0.07 

1.36 ± 

0.10   385 ± 83 173 ± 25 

          

    Equation 3 

  D (N/mm)  G (mm
2
/s)  k(mm

3
/N.s) 

  2,000s 10,000s   2,000s 10,000s   2,000s 10,000s 

P
R

E
S

T
R

E
S

S
 0 MPa  

6.01 ± 

0.62   

1.16 ± 

0.42   

6.98 ± 

1.14 

0.1 MPa 
7.22 ± 

0.36 

10.69 ± 

2.03  

0.57 ± 

0.28 

1.36 ± 

0.52  

4.98 ± 

0.44 

3.03 ± 

0.43 

0.3 MPa 
7.25 ± 

0.94 

18.42 ± 

2.18  

0.72 ± 

0.30 

1.88 ± 

1.09  

4.70 ± 

0.54 

2.30 ± 

0.34 

0.5 MPa 
6.26 ± 

1.49 

19.25 ± 

2.45   

0.74 ± 

0.57 

2.09 ± 

0.24   

4.71 ± 

0.64 

1.55 ± 

0.21 
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Figure 4.3 Analyses of Exertion Phase compressive creep behavior using the 
stretched exponential relation (Eqn 1).  Three parameters (ε∞, β, and τ) were 
obtained from curve fits with r2 > 0.99.  Cross-hatched and solid bars (including 
zero) represent Prestress Phase durations of 2,000 and 10,000 seconds, 
respectively.  * represents a statistically significant difference (p < 0.02).  No 
other significant differences were observed (p > 0.2).  Data are presented as µ ± 
SEM. 
  

Although a simple exponential description of creep strain was not markedly 

influenced by load history, subtle differences in creep behavior were detected by the 

lumped parameter model (Equation 2, Figure 4.4), which also yielded excellent fits 

(r2 > 0.99).  Viscosities as well as short-term (as t � 0) and long-term (as t � ∞) 

effective moduli demonstrated significant differences among Prestress treatment 

groups.  Each of the three parameters exhibited different patterns in group-wise 

differences.  Long-term effective moduli (E2) were grouped predominantly by 

Prestress magnitude.  Short-term effective moduli (E1+E2) appeared to fall into three 

categories according to the combination of load magnitude and duration, suggesting 

that this parameter may be linked to the hydration level of the tissue.  Viscosity 

exhibited similar group-wise differences as the short-term modulus. 
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Figure 4.4 Analyses of Exertion Phase compressive creep behavior using the 
standard viscoelastic lumped parameter model (Eqn 2).  Three parameters (E1, 
E2, and µ) were obtained from curve fits with r2 > 0.99.  Long-term (E2) and 
computed short-term (E1 + E2) effective moduli are presented here.  Cross-
hatched and solid bars (including zero) represent Prestress Phase durations of 
2,000 and 10,000 seconds, respectively.  Letter categories encompass groups 
whose differences were not statistically significant between each other (p > 0.15), 
but are significantly different from groups in other letter categories (p < 0.05).  
Data are presented as µ ± SEM. 
 

Results from analyses using the fluid transport model (Equation 3, Figure 4.5) 

– which also yielded excellent fits (r2 > 0.99) – suggest a mechanistic basis for 

changes in moduli and viscosity.  Trends in the dependence of D, G, and k on load 

history were dramatic.  Parameter D, effects of NP consolidation, was essentially 

unchanged for shorter load histories, but exhibited a significant load-dependent 

increase with longer Prestress.  Parameter G, contributions of AF tension, possessed 

statistically significant contrasting effects between short and long Prestress durations.  

Permeability, k, was load-independent for shorter Prestress, but load-dependent for 

longer Prestress.  One can parametrically assess how increases and decreases in D, G, 

and k impact creep behavior of the motion segment.  It can be shown that resistance 

to creep due to consolidation of the NP accompanies increases in D, due to 

viscoelastic stretching of the AF with decreases in G, and due to strain dependent EP 
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permeability with decreases in k.  Importantly, the data suggest that with higher 

magnitudes and longer durations of Prestress, load bearing during exertion relies 

more on NP consolidation and less on AF tension. 

 

 
Figure 4.5 Analyses of Exertion Phase compressive creep behavior using the 
fluid transport model (Eqn 3).  Three parameters (D, G, and k) were obtained 
from curve fits with r2 > 0.99.  Cross-hatched and solid bars (including zero) 
represent Prestress Phase durations of 2,000 and 10,000 seconds, respectively.  
Letter categories encompass groups whose differences were not statistically 
significant between each other (p > 0.2), but are significantly different from 
groups in other letter categories (p < 0.02).  Data are presented as µ ± SEM. 

 

4.3.2 Load history effects on intradiscal pressure 

Because results from the fluid transport model suggested that subregions of 

the IVD were differentially involved in mediating creep strain according to load 

history, we investigated the model interpretations directly using an IDP sensor.  In 

particular, we expected that since parameter D and G both increase with a higher 

Prestress, measured IDP should be smaller when greater Prestress magnitudes are 

applied.  During the Prestress Phase, application of 0.05 and 0.30 MPa compression 

induced IDPs (mean ± SD) of 97.5 ± 44.3 and 289.6 ± 116.8 kPa above resting 
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pressures, respectively.  In both cases, decreases in IDP over time accompanied creep 

during the Prestress Phase.  The Exertion Phase exhibited a striking difference 

between the two load histories.  Increasing applied stresses to a final magnitude of 0.5 

MPa led to final IDPs of 537.2 ± 51.2 kPa for the 0.05 MPa Prestress group, but only 

373.7 ± 99.1 kPa for 0.30 MPa group (Figure 4.6).   

 

 

Figure 4.6 Average IDP measurements for Prestress Phases of either 0.05 or 0.3 
MPa compressive stress applied for 1,800 seconds, followed by an Exertion 
Phase of 0.5 MPa applied for 900 seconds.   
  

To determine whether sensor insertion resulted in altered disc mechanics, we 

compared 0.3MPa Prestress creep curves with (Experiment 2) and without 

(Experiment 1) sensor insertion.  Inspection of the master plots for the two curves 
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demonstrate that there were no overt changes in creep behavior with the pressure 

sensor inserted (Figure 4.7).   

 

Figure 4.7 Master plot of the compressive creep behavior of intact motion 
segments and motion segments in which pressure sensors were inserted during 
Prestress loading at 0.3 MPa.  Graphs were generated by normalizing curves to 
the strain attained at 1400 seconds (the duration of Experiment 2 using fiber 
optic sensors).  The transient response of the disc with and without the presence 
of the sensor were nearly identical.  Data are presented as µ ± SD.  For clarity, 
error bars are shown only at set intervals and alternating between the two 
curves. 
 

 Since the sensor tip measures only transverse stress in the NP, it does not 

provide any indication as to the general stress state of the tissue.  In order to capture 

the inequality between the axial and transverse stresses, we developed a quantity 

analogous to the octahedral shear stress (OSS).  The analysis is illustrated in Figure 

4.8 and is based on using the difference between IDP and a computed axial NP stress 
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(σNP) to represent the difference in principal stresses in the matrix (σECM).  Using the 

following equations, the OSS can be computed from this simplified model. 

[ ]2
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xECMzECMzECMyECMyECMxECMOSS σσσσσσ −+−+−=  

Substituting in for σECM using measured IDP and computed σNP, we get 
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For axisymmetric discs, such as caudal discs, the radial stresses in the x- and y-

directions are assumed to be equal.  Thus, IDPx = IDPy = IDP, and we can simplify to 
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Figure 4.8 Schematic illustrating the computation of octahedral shear strain 
based on knowledge of applied stress and measured intradiscal pressures. 
 

Although the assumptions of quasi-static conditions and idealized uniformity 

in stress distributions, cross-sectional areas, boundary conditions, and material 

properties are clearly simplifications, the measure offers a quick method to estimate 

the shear stress environment generated after load application, using only the known 

applied stress and measured IDP.  From our data, we find that the magnitude of shear 

is significantly higher, and the IDP dramatically lower, during the Exertion Phase 
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when a higher Preload stress was applied (Figure 4.9).  Whereas IDP exceeded OSS 

for both, the 0 to 0.05 and the 0 to 0.3 MPa Prestress steps, as well as the 0.05 to 0.5 

MPa Exertion step conditions, OSS was only comparable to IDP for 0.3 to 0.5 MPa 

Exertion step. 

 

 
Figure 4.9 Calculated values of octahedral shear strain (OSS) and measured 
intradiscal pressure (IDP) values in the nucleus pulposus at the end of the 
Prestress/Exertion Phases of compressive creep loading.  IDPs under Exertion 
loading were significantly larger than OSS after low 0.05 MPa Prestress (p < 
0.01), and also significantly larger than IDP and OSS after high 0.30 MPa 
Prestress (p < 0.05).  Data are presented as µ ± SEM. 
 
 

4.4 Discussion 

Since biological tissues exhibit viscoelastic material properties, mechanical 

behavior is dependent on the sequence of prior loads.  In particular, sustained loading 

over time results in interstitial fluid exchange both within and across tissue 
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boundaries.  While altering water content by pre-loading tissues has been studied in 

terms of the aggregate mechanical behavior of motion segments, its implications on 

zonal mechanics and mechanobiology have not been explored.  In this study, we 

applied carefully selected levels and durations of compressive stress within the 

physiologic range, generally thought to have little impact for disc function, and 

demonstrated that subsequent mechanical behavior is influenced by load history.  

Though a simple exponential relation was unable to detect change in creep behavior 

during Exertion, models that possess a rheological component to describe viscous 

flow found subtle differences that were statistically significant.  Importantly, models 

predicted marked changes in zonal functions that we were able to verify through 

direct measurements of IDP.  In fact, sensitivity to load history was much more 

pronounced than was predicted by analytical models.  Using a simple computation, 

we interpret the measured IDP values according to load history, and suggest a 

mechanism by which certain spinal load histories might contribute to the aging 

process, even in the absence of excessive applied stresses. 

 There are few studies with which our results can be discussed in the same 

context, and comparisons are difficult to make because of distinctions among 

experimental systems (sample species and locations), procedures for varying 

hydration, and analyses.  In terms of aggregate disc behavior, Race et al. found that 

adjusting hydration through compressive load application (as we had done) results in 

an increase in tangent moduli after 30 minutes, but a decrease after 2 hours, during 

monotonic loading.75  Although we observed similar decreases in both measures of 

compressive moduli, E2 and E1+E2, we did not find the same biphasic time-dependent 
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response that they had.  It should be noted, however, that our values were obtained by 

analyses of creep behavior, rather than direct stress-strain measurements.  Costi et al. 

found contrasting results.96  Using ovine lumbar segments, specimens tested in a bath 

exhibited lower stiffnesses in compression, torsion, and bending compared with 

specimens dehydrated for several hours and then tested in ambient air.  Because water 

content and testing environment were simultaneously varied, it is difficult to 

determine whether the difference in observed effects was due to one or both factors. 

 With respect to IDP, our results are consistent with load history effects 

observed by Adams et al.,10 who examined stress profiles before and after creep 

loading.  In this study, IDP progressively decreased during constant force application 

during both Preload and Exertion Phases.  We found greater decreases in IDP during 

Prestress than Exertion (30% vs 7%), and different magnitudes of pressure drops for 

each loading condition.  These changes, while comparable in magnitude to those 

reported by Adams et al., were observed in a much shorter timeframe.  This may be 

due to differences in disc maturity and/or species.  During the Prestress Phase applied 

stress and IDP were initially similar, but the decrease in IDP under a constant load 

necessarily results in an imbalance between the transverse and axial stress 

components.  Adams et al. also observed this phenomenon, finding that the ratio of 

vertical to horizontal stress measurements increased after creep loading.   

 To estimate the shear associated with the difference between transversely- and 

axially-directed stresses, we utilized IDP measurements and an adjusted applied 

stress, respectively.  This adjusted stress assumed that the AF functions in tension 

only to resist lateral expansion of the NP tissue, and not as a compression-resisting 



www.manaraa.com

 

 73 
 

strut between vertebrae.  While this is clearly a simplification of the AF’s load-

bearing role, we have previously observed that rodent caudal discs exhibit significant 

outward buckling when sustained compression is applied (unpublished data).  This is 

similar to what others have reported in the anterior AF of intact human 129 and ovine 

discs.130, 131  Based on computational predictions132 and direct pressure sensor 

measurements,10 the axial loads in the anterior AF are fairly low.  Although discs that 

undergo degenerative changes after puncture 105 or static loading133 likely sustain 

more axial compression, much like the posterior AF of human discs,10, 132 our 

assumption for this current study is at least reasonable for comparison among the 

experimental groups. 

 Magnitudes of OSS notwithstanding, it is interesting to note the trends of IDP 

and OSS observed with the different load histories.  It has been postulated that the 

age-associated degradation of proteoglycans leads to loss in osmotic pressure, 

decreased disc pressurization and increased shear stress in the NP.  The altered 

mechanobiologic environment then causes deregulation of gene expression, resulting 

in NP remodeling into more fibrous tissue morphologies.  Findings from this study 

suggest that additional contribution may come directly from load histories that 

compromise IDP generation and further stimulate mechanobiology-induced 

biochemical changes.  When discs were loaded from the reference configuration or 

after minimal compressive stresses, IDP remained well above OSS.  However, after 

moderate levels of compressive stress, OSS increased to comparable levels of IDP.  

Theories in mechanobiology posed by Carter and colleagues as well as Prendergast 

and colleagues are based on competing influences of pressure and shear,134, 135 with 
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OSS often used as a quantitative measure of the shear environment.  When 

considering the competing parameters of OSS and IDP, as seen in Figure 4.9, the 

Prestress loads and the 0.05MPa to Exertion Prestress group all show significantly 

higher IDP generation, as compared with OSS.  In the Prestress group, for 0.3MPa to 

Exertion, IDP decreases and OSS increases to comparable values.  Our interpretation 

of these trends is that higher Prestress generates greater annular stress relaxation and 

radial consolidation of the NP, both of which contribute to a lower IDP.  In turn, the 

load-bearing role of the annulus fibrosus may shift from predominantly tensional to 

axial compression.  Although we cannot measure this directly, it is consistent with 

what others have also hypothesized 133, 136.  The decrease of annular contribution (i.e. 

increase in G) seen in the fluid transport model also supports this notion.  Based on 

these theories, we have developed a conceptual model (Figure 4.10) to explain how 

certain load histories may influence the relative magnitudes of OSS and IDP to 

stimulate remodeling from cartilaginous to fibrous tissue.  In the NP, it has been 

shown that OSS corresponds with a threshold effect with NP cell apoptosis,137 while 

hydrostatic pressures stimulate NP maintenance.138-141  Thus, load histories that tend 

to generate greater shear and lower pressure in the NP may accelerate age-related 

changes in the IVD. 
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Figure 4.10 Our working model for the role of load history on OSS and IDP in 
the NP.  Illustration shows how two load paths to the same high exertion load 
may lead to distinct OSS-to-IDP ratios.  Based on hypothesized mechanobiology 
principles, the “safe load history” would promote maintenance of NP cell 
phenotype, while “adverse load history” would stimulate a degradative response.  
Bars for IDP and OSS are meant to illustrate relative changes, not actual 
magnitudes. 
 

 Although mathematical analysis of compressive creep behavior was a 

straightforward approach for guiding the experimental aspect of this study, the 

models we used were either incapable of or inadequate for fully resolving the effects 

of load history on internal disc mechanics.  One important factor to consider is the 

nature of the models, which cannot capture three-dimensional phenomena that may be 

important in disc creep.  Even though creep behaviors are similar, there may be 

distinct events occurring in other dimensions.  The exponential description of creep 

demonstrates that the overall mechanical behavior of the motion segment is 

essentially unchanged, suggesting that changes in stress within the IVD would not 

adversely affect mechanics of the spine.  While the standard viscoelastic solid showed 

differences in stiffness and viscous behaviors, it could not discriminate effects on 

individual disc subregions.  For this purpose, the fluid transport model was useful, but 
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still was only able to detect changes for long duration Prestress conditions.  Our 

experiments demonstrated that, even below 2,000 seconds of Prestress, there were 

significant changes in IDP, despite model predictions that D, G, and k do not differ 

among stress magnitudes at these durations.  It should be noted that a number of 

simplifying assumptions were made by Cassidy et al.82 in developing Equation 3, but 

it is unclear how significantly these assumptions contribute to model sensitivity.  

Also, it is possible that leaching of GAGs from the IVD during extended durations of 

testing in a fluid bath could have contributed to a reduced sensitivity of the 

mathematical analyses, but this was not explicitly investigated in this current study.   

 Rat caudal discs markedly differ in size and composition from adult human 

discs, but the biological function and regional structures are similar.  Past studies 

have shown that there are many biomechanical similarities among certain species and 

between spinal and caudal discs 99, 120.  However, one key difference in biomechanical 

function between adult human discs and rat caudal discs is the roughly 43% shorter 

time constant for rat discs during creep compression 142.  Because our model 

outcomes showed that Exertion response was strongly dependent on Prestress 

duration, our observations are very likely to exhibit an exaggerated response 

compared with that which would be found in adult human discs.  It remains to be 

determined how juvenile human discs might compare with these two tissues.  

Nevertheless, we believe the observed principles likely remain applicable. 

 One of our reasons for using rat caudal discs is the prevalence of rodent tail 

loading models in disc mechanobiology research.  Such studies have demonstrated 

that magnitude and frequency of dynamic loading can be important in regulating disc 
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health.13, 143-145  A second and equally important motivation is our particular interest 

in the changes that occur in human IVDs during early adulthood.  Like immature 

human discs, rat caudal discs possess a predominantly notochord-derived cell 

population in the NP.  While age-related changes in NP mechanics are not well-

characterized, it is likely that the unique protein composition, cellularity, and 

consistency of notochordal NP tissue impart specialized material properties that affect 

IDP generation.  Thus, we expect our results to have the most relevance to human 

IVD mechanobiology during growth.  Although the loads that were selected for study 

span the range of what are believed to be from prone to low and moderate exercise to 

heavy labor, these are estimated for adult discs and may overestimate those 

experienced by immature discs.   

 An additional point of concern lies in the insertion of a sensor to measure IDP.  

As of yet, there are no validated means to measure IDP non-invasively, and many 

groups have utilized the same invasive approach as we have 10, 32, 146.  In agreement 

with these reports and our own previous work, our current study demonstrated that 

the transient mechanics on the level of the motion segment were not affected by the 

insertion of the fiber optic sensor (Figure 4.7).  The fact that pressure measurements 

did not rapidly dissipate after loading also suggests negligible pressure venting or 

leakage after the insertion of the sensor into disc.  Taken together, these various 

studies suggest that for small enough diameter sensors the effect on IDP generation 

may be minimal.  Although Michalek et al. found that even 30g needles altered disc 

mechanics under compression, their needles were blunted and likely produced more 

damage to the annulus than traditional tapered hypodermic needles 147.  While 



www.manaraa.com

 

 78 
 

specific implications of these limitations require further investigation, we believe that 

our findings on the role of load history in the internal mechanics of the disc remain 

broadly applicable in IVD mechanobiology.  
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Chapter 5 Effects of Load History on Nucleus Pulposus Gene 

Expression in Caudal Rat Discs 

The previous experiment determined the hydrostatic pressurization in the NP, 

thus identifying the cellular environment for NP cells.  Through calculation we found 

greater and lesser pressurized environment as well as a condition that yielded greater 

shear stress.  Given in vitro experiments, hydrostatic pressure has yielded a biological 

response towards maintenance and remodeling of the NP ECM, while increased shear 

may result in increased breakdown.  This experiment uses further simplified load 

histories to determine if the predicted higher pressurized environments would result 

in increased gene expression for anabolic ECM genes.   

5.1 Introduction 

The incidence of low back pain is widespread across populations all over the 

world.  Low back pain is often attributed to deregulated biological function and 

compromised mechanics of the intervertebral disc (IVD)148.  These biological and 

mechanical changes are related to degenerative disc disease and aging.  This 

breakdown and disease is characterized by a loss of load resistant properties, centered 

around the swelling of the disc.  As this ability to retain water is lost, the IVD 

becomes more and more compromised.  The continual breakdown of the disc severely 

hinders the function of the disc, which is to provide flexibility for the spine as well as 

absorb loads.  During degeneration, the extracellular matrix begins to breakdown, 

limiting hydration and disc health1.  It is still uncertain what causes these extracellular 
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changes, but experiments have showed that they are linked to many different and not 

fully understood biological processes.  

The nucleus pulposus (NP) is the inner gelatinous core of the IVD, and plays a 

critical role in the load bearing function of the disc.  In a healthy disc, the NP 

maintains fully hydrated, however, in a diseased disc, the matrix that makes up the 

core becomes more and more broken down, losing its ability to retain water.  This 

hydrated state allows the NP to pressurize as a response to applied loads.  The ability 

to generate a hydrostatic load to disperse the applied forces is the main reason why 

the fluid content in the disc is such a subject of emphasis.  Hydration has also been 

shown to influence both the instantaneous stiffness as well as viscoelastic behavior75, 

96.  The hydration level in the disc changes and responds to applied loads, however, as 

a viscoelastic material, there is a recovery time associated with these physical 

parameters. 

Exploring the mechanics of is a critical first step in understanding how the 

disc functions, which will provide insight to biochemical reactions and changes in the 

disc as well.  Disc hydration is directly linked with the health of the extracellular 

matrix, however, other factors have also been shown to contribute.  We have 

previously shown in our lab that load history also influences current and future 

behavior of the disc, particularly in terms of hydration.  Using an analytical model we 

previously showed that load history has a profound effect on the mechanical function 

of different subregions, end plates, annulus fibrosus and the NP97. Furthermore, we 

showed directly measured and showed the dependence of the intradiscal pressure on 

prior loading. Load history influences disc hydration and other factors, impacting the 
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disc’s behavior for subsequent loads10, 16.  These changing conditions offer an equally 

changing environment for the cellular activity within the discs.  Chemical and 

physical factors such as changing hydrostatic pressure or osmolarity have been shown 

to influence the metabolic behavior of the cells149.  While disc cells have been 

extensively studied in vitro, or in organ culture, few groups have monitored the 

cellular change influenced by in vivo loading150.  

In this study, we demonstrate the influence of the cellular environment due to 

altered load history.  At any moment, the hydration of the disc is linked with its 

biomechanical function.  We have shown that this hydration and intradiscal pressure 

to be influenced by different load histories.  We apply relatively known environments 

on the cells by using loading scenarios we have explored in the past, and study their 

effect on the cellular behavior given this environment.  This shows that load history is 

important when describing the response of the disc, in terms of mechanical and 

biological response. 

 

5.2 Materials and Methods 

5.2.1 Short History Group 

Skeletally mature Sprague-Dawley male retired breeders (9-18 month old) 

were anesthetized via inhalation using isoflurorane gas and prepared for surgery.  

Using radiographic confirmation (Fluoroscan III, Hologic Inc., Bedford, MA), two 

sets of holes were drilled into the vertebrae of the caudal c5-6 motion segments.  Pins 

were inserted into the holes and used to attach a custom set of rings used to mount 

onto a Bose Electroforce benchtop materials testing system (LM-1 Bose Corp, Eden 
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Prairie, MN).  For the short history loading group, there were 3 control groups and 

one experimental load history group, shown in Figure 5.1.  The experimental group 

(n=5) consisted of an hour of axial loading at 0.5 MPa followed by an hour at 1.0 

MPa.  Control group one (n=5) was held unloaded for an hour, followed by a 1.0 MPa 

load.  Control group two (n=3) was loaded at 0.5 MPa for one hour followed by a 

held 0 MPa load.  The last control group (n=3) was subject to 0.75 MPa loading for 2 

full hours.   

 

Figure 5.1 Loading regime for the 4 short history loading group. 
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Force applied was estimated using the desired stress and approximate circular 

cross section of disc from radiographs.  After each group was loaded for two hours, 

the rat was euthanized and the NP was harvested for gene expression analysis.  The 

experimental c5-6 disc was harvested along with the adjacent c4-5 disc, to be used as 

an internal control.  Loading regime was recorded for displacement and load at a rate 

of 1 Hz.  Radiographic images were also taken throughout the loading regime and 

used to monitor disc height.  Rats remained anesthetized during the entire surgical 

procedure as well as loading period.  All protocols and procedures were approved by 

the Institutional Animal Care and Use Committee at the University of Maryland, 

College Park. 

 
 

5.2.2 Long History Group 

As described above, skeletally mature Sprague-Dawley rats were used. The 

same preparation for surgery and ring mounting procedures mentioned above were 

used.  In the long history loading group there was one experimental group and one 

control group, shown in Figure 5.2.  The experimental group (n=5) was loaded at 0.5 

MPa for one hour, followed by three hours of loading at 1.0 MPa.  The control group 

(n=5) was controlled and unloaded for one hour, followed by three hours of loading at 

1.0 MPa.  Following four hours of loading, each rat was again, euthanized and the 

experimental c5-6 and the internal control c4-5 discs were harvested for gene 

analysis.  Loading regime was recorded for displacement and load at a rate of 1 Hz.  

Radiographic images were also taken throughout the loading regime and used to 

monitor disc height.   
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Figure 5.2 Loading regime for the long history loading group. 

5.2.3 Gene Expression Analysis 

NP tissue was harvested from the experimental samples and placed in 350µl 

of lysis buffer and flash frozen using liquid nitrogen.  RNA was isolated from the 

tissue sample using an RNEasy Micro isolation kit (Qiagen, Valencia, CA).  Samples 

were transcribed and real time RT-PCR was performed with SsoFast EvaGreen 

supermix in triplicate using iCycler (Bio-Rad Laboratories, Hercules, CA) to quantify 

expression of the following genes: collagen II, aggrecan, sox9, ADAMTS-4, collagen 

I and TonEBP with 18s as a housekeeping gene. 
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Table 5.1. Primer sequences used in the real time RT-PCR reactions. 

Gene Name Primer Forward Sequence 
Primer Reverse Sequence 

GenBank 
Ascension # 

Rat 18s 5’ CGC GGT TCT ATT TTG TTG GT 3’ 
5’ AGT CGG CAT CGT TTA TGG TC 3’ 

X01117 

Rat Type II 
Collagen 
A+B 

5’ GTG AGC CAT GAT CCG C 3’ 
5’ GAC CAG GAT TTC CAG G 3’ 

NM_012929  

Rat Aggrecan 5’ GGA CTG GGA AGA GCC TCG A 3’ 
5’ CGT CCG CTT CTG TAG CCT GT 3’ 

NM_022190 

Rat Sox-9 5’ AAT CTC CTG GAC CCC TTC AT 3’ 
5’ TTC CTC GCT CTC CTT CTT CA 3’ 

XM_343981 

Rat 
ADAMTS-4 

5’ AGG CCG GAA ATA ACC TCA CT 3’ 
5’ TGG GGT ACT GTC AGG TAG GC 3’ 

NM_023959 

Rat Type I 
Collagen  

5’ GCC CAG AAG AAT ATG TAT CAC CAG A 3’ 
5’ GGC CAA CAG GTC CCC TTG 3’ 

NM_053304  

Rat TonEBP 5’ TCA CGA GGA AAG ATG GCT CTA CT 3’ 
5’ GGA ACT CCT GCT GGC TGA GT 3’ 

NM_0011074
25.1 

 

5.2.4 Disc Height 

 Radiographs were taken at one minute intervals for 10 minutes after every 

step load, and every 10 minutes at all other times.  These images were recorded and 

processed using a custom MatLab (MathWorks, Natick, MA) program.  Briefly, this 

program measured the distance between three parallel segments across the disc, at the 

left, right and middle.  These distances were measured and averaged to yield the disc 

height at each time point.  These distances were converted into strain by dividing by 

the disc height measured at time zero, before loading began.  The standard solid 

viscoelastic model was applied to the displacement curves after each step load.  Also 

the final strain was recorded at the end of the loading regime.   

5.2.5 Data Analysis and Statistics 

Relative quantification of real-time RT-PCR data was performed using the 

∆∆Ct method (Livak and Schmittgen, 2001). Briefly, the Ct values for each triplicate 
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were averaged and used for subsequent calculations. ∆Ct was computed by 

subtracting the averaged Ct values of the internal control gene 18s from those of the 

gene of interest. ∆∆Ct for each gene of interest was computed by subtracting the ∆Ct 

of the baseline control (adjacent unloaded c4-5 disc) from the ∆Ct for the loaded disc. 

These ∆∆Ct values for each gene of interest of each group were then expressed as 

relative changes in mRNA levels (fold difference) through the exponential relation: 2-

∆∆Ct. Data are reported as the average value of the range of calculated fold difference, 

which incorporates the standard deviation of the ∆∆Ct value in the fold difference 

calculation as ∆∆Ct+SD and ∆∆Ct-SD. Statistical analyses (JMP 7.0, Cary, NC) were 

performed using am independent T-test, comparing the experimental gene expression 

with each individual control group (α=0.05). One way ANOVA with Tukey’s HSD 

post hoc analysis was performed on the final displacement strains of the disc heights. 

 

5.3 Results 

The biological response of NP cells are examined here using the relative 

change of gene expression after different loading scenarios. Figure 5.3 represents the 

quantitative results of real time RT-PCR shown in units of fold difference on a 

logarithmic scale for genes examined for the short history loading group.  The 

preloaded experimental group showed consistently higher gene expression than all of 

the controls.  While this experimental group was not statistically significant from the 

nonpreloaded group, it did show change from the other two control groups.  All of the 

genes explored showed a decreased gene expression in the preloaded, no exertion 

group as compared to the experimental group, however, only collagen II was 
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statistically significant.  More statistical relevance can be observed when the 

experimental group is compared to the 0.75 MPa hold group, as collagen II, collagen 

I and ADAMTS-4 all show statistical significance, while other genes continue to 

support this difference, despite lack of significance.  The trends presented here are 

able to suggest or explain disc behavior.  The short history 2 hour loading groups are 

meant to show immediate response to the loads given known environment the cells 

are experiencing. 
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Figure 5.3 Real time RT-PCR was performed on each of the short history 
loading scenarios.  The experimental group was compared to each control group 
individually using an independent T-test (t<0.05) as there was no need to 
compare the control groups with each other.  While there were no differences 
found between the preloaded experimental group and the nonpreloaded control 
group, a number of statistical differences were found with the other two control 
groups. 
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 The long history group was examined to determine if there was a change after 

an additional 2 hours of loading.  The total of 4 hours did not help capture the 

biological response of the cells, as the separation between experimental and control 

groups lessened, instead of widening.  The experimental preloading group showed no 

statistical difference from the no preloading group (Figure 5.4).  Not only was there 

no significance, all but the collagen I gene expression was almost identical, and close 

to the relative expression of the unloaded adjacent internal control.  The relative 

expression for these genes was close to 1.   
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Figure 5.4 The long history loading regimes were compared over a variety of 
relevant genes, however, none of the gene expression changes were statistically 
significant, using an independent T-test (t<0.05).  The gene expression between 
the preloaded and non preloaded groups are markedly more similar, suggesting 
that the extra time under loading was beginning to allow the biological response 
reach equilibrium. 
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The disc height was recorded to garner evidence of changing viscoelastic 

properties between the loading groups.  The resolution of the images taken proved to 

be inadequate to observe any viscoelastic change in the creep response, using the 

standard viscoelastic solid model.  The strain observed, however, provided a final 

displacement change at the end of the loading program, shown in Figure 5.5.  In the 

short history group, this end strain was compared and showed no difference among 

the preloaded experimental group and the no preload control 1 group and the 0.75 

MPa held control 3 group.  There was a statically difference with the preloaded no 

exertion control 2 group.  In the long history group, however, there was a change 

between the experimental and the control group.   
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Figure 5.5 Disc height measurements did not yield conclusive data in terms of 
creep response.  The final disc heights were recorded and showed no significant 
difference between the 0.5 MPa preloaded group and the no preload and the 0.75 
MPa hold groups.  These three groups showed a difference with the no exertion 
0.5 MPa preload group.  In the long history group, the two groups also had 
statistical significance in disc heights using a one-way ANOVA with Tukey’s post 
hoc HSD analysis (α<0.05). 
 

5.4 Discussion 

Our past work has shown that load history influences hydration and 

mechanical behavior of the IVD, particularly the intradiscal pressure.  More 

specifically, given a low initial preload, followed by a higher exertion load, the 

intradiscal pressure generation is lower than  if the exertion load was applied alone97.  

Given this simple example of the effects of prior loading, we understand the state of 

the NP during this exertion state.  We can compare the preloaded to the nonpreloaded 

group and predict relatively, that the hydrostatic pressure within the disc is higher in 
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the nonpreloaded group.  Using this behavior, this experiment then examines the 

biological response of the cells in terms of gene expression of relevant proteins.   

 The gene expression of the preloaded experimental group shows greater, 

albeit not significant, expression of catabolic extracellular matrix proteins including 

collagen II, aggrecan and sox9, as compared to the control 1, nonpreloaded group.  

This is contrary to what we originally predicted, as it has been shown that increased 

hydrostatic pressure causes both, increased collagen and proteogylcan synthesis as 

well as increased gene expression of collagen I, collagen II and aggrecan with NP 

cells in alginate beads151, 152.  Instead we saw that there is a decrease in aggrecan and 

collagen II for the higher pressure environment of the nonpreloaded group.  It is 

believed that hydrostatic pressure should stimulate build up of extracellular matrix 

proteins such as collagen II and aggrecan, however neither collagen II, aggrecan, nor 

sox9, an collagen II promoter showed increased levels.  ADAMTS-4 showed 

upregulation in the preloaded, low pressure group, which leads to a breakdown of 

aggrecan, the main proteoglycan that is responsible for hydrating the disc.  This may 

not be a destructive path however, as it is shown to be combined with an increase of 

aggrecan, which may indicate a remodeling or restructuring and rebuilding of the 

extracellular matrix.  This could suggest that instead, the inadequate pressure buildup 

signaled the cells to regenerate and reorganize matrix. Both the preloaded and 

nonpreloaded group both showed comparable increased gene expression for collagen 

I, the more fibrous structural element in the disc, which is expected under any loading 

scenario.   
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A different approach was taken to explore the influences of the disc on 

cellular productivity.  A number of other groups have explored the influence of 

osmotic pressure, rather than applying hydrostatic pressure using mechanical means  

They suggested that mechanical stimulus of static stress or cyclic strain were not as 

influential as osmolarity, also showing that rising osmolarity could induce expression 

of aggrecan and collagen II149.  To additionally investigate the effects of osmolarity, 

the exploration of TonEBP, a tonicity enhanced binding protein, in this study was to 

test the response of TonEBP in this in vivo setting given known pressure changes.  It 

was expected that the changing pressures would stimulate the expression of TonEBP 

due to its tonicity sensitive elements.  TonEBP, which also functions as an aggrecan 

promoter, has been linked to helping regulate and encouraging proteoglycan 

remodeling to compensate for hyperosmotic environment153.  Encouraging a build up 

of aggrecan under a hyperosmotic environment would encourage a greater capacity to 

sequester water, and therefore prevent future hyperosmotic events.  Comparing the 

preloaded and nonpreloaded groups, the preloaded group with less pressure would 

indicate a smaller volume and less hydration, therefore a higher osmotic environment 

as compared to the better hydrated nonpreloaded higher pressure group.  Using this 

definition of osmotic environments, we can reason the increased expression of 

collagen II, sox9, aggrecan and TonEBP, as they were more responsive to the 

increased osmotic environment in the preloaded group. 

While papers have shown that 20 seconds of mechanical stimulation is enough 

stress to induce an increase in proteoglycan synthesis within 2 hours154, other groups 

have shown that the peak gene expression response occurs at 24 hours, and does not 
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return to normal levels until 72 hours after loading155.  Since our loading scenario 

requires the gene expression analyzed to correspond to the precise instant of 

pressurization by the disc, we chose a short 2 hour loading regime.  However, as the 

response was not adequate to induce a significant gene response, an additional 2 

hours was added after the initial preloading state.  In this long history group, we again 

compared the preloaded group with a nonpreloaded group, following 3 hours of 

exertion load instead of the one hour experienced in the short history group.  Not only 

did the expression levels all fall to close to natural levels, the separation between the 

two groups also lessened.  The gene expression shows that collagen II, sox9, 

aggrecan, ADAMTS-4 and TonEBP all show relative expressions close to one, which 

is normalized to the natural unloaded disc.  While the relaxation of the intradiscal 

pressure is well beyond 3 hours, this may also be explained by the influence of the 

tonic, and therefore osmolarity within the disc, which may have been initially 

hypertonic, however, after additional time, may have reached equilibrium, as cells 

pull small molecules and ions to reach a resting state.  This osmotic environment may 

have returned to a normal environment, while the pressure from the mechanical 

exertion still remained, which would account for the lowered expression of all of the 

genes examined.   

The use of the preloaded, no exertion group, control 2, was to offer data to 

ensure no residual response from the preload on the measured gene expression after 

the exertion load.  This no exertion group provided evidence that the preload had no 

immediate impact on the measured expression of the experimental group by yielding 

results that were below the natural adjacent unloaded control disc.    While collagen II 
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was the only statistically significant group, aggrecan, sox9, ADAMTS-4 and TonEBP 

all were close to achieving significance, adding to this trend.  In combination with the 

no preload group, the no exertion group proved that it required the successive loads of 

both the preload and the exertion load to cause the increased biological response 

experienced by the experimental group. 

The 0.75 MPa hold control group was introduced to expose the disc to an 

equal amount of stress averaged over the time period, as the experimental group to 

reinforce the idea of load history.  One hour of 0.5 MPa preload and 1.0 MPa exertion 

load was equated to 1.5 MPa experienced over the two hours of loading.  This was 

normalized to 0.75 MPa for both hours, to total the same average stress experienced 

by the disc over 2 hours.  Again, this control 3 group showed a drastic difference 

from the gene expression displayed after the preloaded experimental group.  Collagen 

II, collagen I and ADAMTS-4 all showed a statistically significant change between 

the preloaded experimental group and the 0.75 MPa hold group.  Not only was it 

different, it did not even show the same expression pattern.  Instead of a lesser degree 

of gene expression, this control group showed little change from the natural unloaded 

adjacent disc. 

To further emphasize this point, Figure 5.6 was created to illustrate the 

influence of the sequential loading experienced by the preloaded experimental group.  

The short history experimental group experienced two hours of loading.  The 0.75 

MPa hold group also experienced two hours of loading, while the long history no 

preload control group received three hours of loading.  Both of the compared control 

groups experienced either the same average stress or a greater amount of stress than 
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the short history experimental group, yet the gene expression results show almost no 

response for both the 0.75 MPa hold group as well as the long history nonpreloaded 

group, while the preloaded short history experimental group had significantly larger 

response.  These loading scenarios have similar attributes, with the only difference 

being the addition of the preload, which was then increased to an exertion load.  This 

sequential step load caused this more drastic gene response, signifying that prior 

loading is important when predicting the biological response as well.   

Lastly, the end strain observed by the radiographs of the disc heights in the 

short history group, only managed to show significant change between the no 

exertion control group from the other two control groups and the experimental group.  

A significant difference between the experimental group and the control group was 

able to be detected in the long history group.  This helped verify that although the 

loading mechanics of the long history groups were different, the gene expression for 

that group remained surprisingly similar.  Unfortunately, the resolution of the 

radiographs taken was unable to provide a clear enough analysis to show the 

changing creep response between the preloaded and nonpreloaded groups. 
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Figure 5.6 These testing groups were selected due to their similar loading nature.  
The short history preloaded group was loaded for two hours, first with low, then 
a higher exertion load.  The long history no preload was loaded at the high 
exertion load for 3 hours total, while the short history loading 0.75 hold group 
was loaded for 2 hours.  While the long history non preloaded group and the 
0.75 hold group were both loaded for 2 or more hours, they show remarkably 
different results than the preloaded group.  This may be due to the changed 
environment in the disc due to the differing load histories, notably a gradual 2 
step load instead of only one large load.  Statistical significance is noted, however 
a number of other gene comparisons between the long history control and the 
short history experimental group were close to reaching significance (sox9, 
collagen I and TonEBP). 
 

Many things were learned about the biological response of NP cells after 

known load histories.  While the anticipated high intradiscal pressure did not yield 

expected changes in catabolic gene expression, there was a noticeable difference 

between the low and high preloaded groups, as well as the control groups, showing 

that the unique sequence of preload and exertion load changes the behavior of the 
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disc.  Control groups 2 and 3 confirmed that the unique response garnered from the 

experimental group did not result from the preload alone, or from the total stress 

placed on the disc, respectively.  What can be concluded is the ability for differing 

load histories to elicit a response.  While the no preload group generated a smaller 

gene response, the high stress preload experimental group yielded a definite response, 

causing increased gene expression for the anabolic genes as well as the catabolic 

ADAMTS-4 gene.  This study has also eliminated hydrostatic pressure as the primary 

driving force behind dictating gene expression of NP cells under loading.  It is likely 

due to a combination of the other physical environmental factors suggested, tonicity 

and shear stress, or an unknown chemical stimulus.  What was learned was that NP 

cells are indeed sensitive to the subtle changes in environment imposed by differing 

load histories, and that these changes are not alone dictated by intradiscal pressure.  

The hydration and osmolarity need to be further examined in order to determine a 

dominant factor that triggers our observed response.  Additionally, we see through the 

long history group that there is likely a biological equilibrium that is reached between 

2 and 3 hours of loading at one stress.  While it takes over 3 hours for the intradiscal 

pressure to reach equilibrium, we saw a loss of response by all groups, as the 

nonpreloaded and high preloaded groups both showed gene expression close to that of 

the unloaded adjacent control disc during the long history experiment.  The physical 

pressure parameter is again shown as not the lone dictating factor for the biological 

response of NP cells. 

The effects of load history have been captured in terms of intradiscal pressure 

and general viscoelastic behavior.  This study effectively begins to translate some of 
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these physical changes experienced by the discs with given loading histories, into 

biological changes experienced by the cells, as shown through gene expression.  

While we initially predicted the generated hydrostatic pressure dictating gene 

response, it then became clear that another driving factor was in play, which we now 

believe to be osmolarity.  There are many contributing factors when it comes to 

cellular behavior, with many triggers and conflicting signals.  More study is necessary 

to fully understand what is dictating the response; however, it is clear that prior 

loading does change and further complicate the behavior of the disc, mechanically 

and biologically. 
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Chapter 6 Optimizing Miniature PAMs for an in vivo Rat Disc 

Loading Device 

Our experiments have shown short term immediate effects of load history, 

however, the more interesting story involves influences of load histories as they are 

applied over a longer period of time.  While past devices have been made for long 

term dynamic loading for a caudal rat disc, the PAMs offer a number of benefits 

including a lighter weight that improve upon the existing designs.  Miniature PAMs 

are a relatively new concept and thus need to be characterized and optimized for our 

need due to customizable nature and number of combinations available.   

6.1 Introduction 

Intervertebral disc mechanics has been widely researched in the past in an 

effort to understand the cause of low back pain, experienced by greater than 70% of 

people in their lives156.  The intervertebral disc is also a complex fibrocartilaginous 

tissue unlike the more commonly studied articular cartilage.  Instead of varying in 

depth, the intervertebral disc is made of a gelatinous core called the nucleus pulposus, 

which is surrounded by a fibrous lamellar ring structure, the annulus fibrosus and 

capped by cartilaginous endplates.  The complexity of the disc’s structure has made 

its behavior more difficult to understand and predict.  To understand the biological 

changes experienced by the disc during loading, many approaches have been taken to 

load the disc cells including in vivo, organ culture and in scaffolds.  Common 

research models have included cadaver spines, various large animals (bovine, ovine) 

and small animals (rat, rabbit)12, 13, 15, 98, 144, 154, 157.   The most obvious disadvantage 
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towards cadaver spines is the difficulty to harvest living tissue and therefore inability 

to resultant biological response after applied loads.  Our lab has focused on the 

development of using a caudal rat disc model, in which we’ve developed a trans-

annular puncture induced generation protocol105, and have a good understanding of in 

vitro cell behavior in monolayer on tissue culture polystyrene, and collagen thin 

films, as well as in alginate 3D culture158.. This study aims to take advantage of the 

commonly used rat model to create an in vivo loading device capable of long term 

loading to study biological changes over time. 

There have been many devices that apply long term loading regimes in vivo, 

however, these systems are designed for larger animal models98, 159, 160.  In the rat 

model, a number of groups have studied gene expression and protein synthesis after 

loading, however, these are mainly short term experiments lasting only up to a few 

hours under anesthesia attached to a bench top loading device16, but few devices have 

been used to examine dynamic long term loading on the disc13, 150.  While a controlled 

dynamic loading scenario is our goal, another creative method that must be 

mentioned is a model that applies stress on the spine through the amputation of the 

forelimbs and forced hind leg ambulation in rats106.  While innovative, the ability to 

control loading using this method is limited and only shows the degenerative process 

of upright posturing in rats.  Most notably, Wuertz et al. used a piston based pin and 

ring device for rat tail disc loading for up to 8 weeks150.   This is a robust device that 

is easily controlled and used for a variety of loading scenarios, so it was the basis or 

model for our own design.  With our device, we hope to reduce weight and size, as 

well as cost.  We plan to achieve this through the use of Pneumatic Artificial Muscles 
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(PAMs) attached to a similar ring device utilizing cross-pins that are drilled through 

the vertebrae of the motion segment to be loaded.  Cost of construction and spare 

parts for repair are low for the PAM device, while achieving the same goal of a 

customizable loading regime.   

 

 Pneumatic Artificial Muscles (PAMs), also known as McKibben actuators, are 

soft smooth actuators made using an elastomeric bladder enclosed within a braided 

sleeve.  Briefly, as pressure is applied to the bladder, the PAM expands in girth, while 

decreases in length.  This contraction is the desired “stroke” as compared to a 

conventional piston actuator.  While not new to the medical or biological setting, as it 

was originally used in orthotic devices in polio patients161, more recently this type of 

actuator has been used in manipulation and joint control in robotic systems, extension 

of wing flaps in aircrafts, as well as a variety of other applications162-164.  The 

relatively simple design, and minimal material is composed of the elastic bladder, 

mesh braided tubing and the small aluminum end-fittings.  Not only does this make 

the design lightweight, but also relatively inexpensive to produce.  Also, these simple 

parts may be swapped for a change in material, braid angle, or size for an unlimited 

combination of properties165.  Other noted advantages of the PAM actuator include 

durability, reliability and a high power to weight ratio as compared to electrical or 

hydraulic actuators166, 167.  To our knowledge, this is the first attempt to develop 

PAMs at the small length scale (<inches).  Another big advantage the PAM provides 

is the smooth actuation motion, which is particularly important when dealing with 

biological samples; there isn’t a sudden impact between loading commands, as the 
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bladder provides a smooth transition between loads.  Unlike a pneumatic piston, 

which has to overcome the friction on the stroke shaft, the PAM is able to flow 

smoothly between loads.  This is relevant when loading a biological sample such as a 

disc because a sudden application of load may exert trauma upon the tissue instead of 

the desired load, which would provide very different mechanical results, as well as 

possibly cause damage on a cellular or structural level.  An additional benefit from 

the frictionless stroke motion is the retraction of an unloaded PAM.  In a piston, there 

is inherent friction stemming from the shaft of the piston itself.  If this friction is in 

place, a loaded tissue that is suddenly unloaded must battle this friction in order to 

relax, however, with the PAM, this frictionless stroke would allow immediate 

relaxation.  One disadvantage is that stroke length that is limited by the elasticity and 

girth of the bladder.  However, in our applications, displacements are relatively small, 

and stroke length would not be a relevant factor.  Lastly, the flexibility of the PAM 

allows a number of additional benefits towards loading the disc.  Most obviously, the 

tail is itself, a flexible joint system that may bend or flex due to loading or because of 

rat motion.  The PAM system would allow the flexibility for this to occur.  

Additionally, the flexibility allows for future application of bending studies, to 

overload the disc on one side and open a whole new type of loading regime to 

investigate. 
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6.2 Methods 

6.2.1 Mini-PAM Assembly 

A mini-PAM is composed of a latex bladder surrounded by a braided sleeve. 

These two materials are held together with swaged end fittings. Each end fitting is 

made of a 0.5-in length, 6-32 threaded rod and a 3/16-in diameter outer swage tube. 

The threads on a 1/8-in section of the threaded rod length are removed. One of the 

end fittings is given a thru-hole so the mini-PAM can be inflated and deflated.  

In order to assemble the actuator, the latex bladder is placed inside the braided 

sleeve, and centered. The non-threaded sections of each end fitting are placed inside 

the ends of the latex bladder and held in place by the elasticity of the bladder. Epoxy 

is added over a small section of the braid where the end fittings meet the bladder, 

which aids in holding the assembly together after curing. The swage tubes are then 

positioned over the braided sleeve so that half of the swage tube covers a portion of 

the threaded rod and half covers a portion of the rubber tube. 

The assembly is then placed into a 3/16-in collet until one swage tube is fully 

within the collet. The collet is tightened in a milling machine, permanently deforming 

the tube and clamping the ends. The process is repeated on the other end. The 

assembly is removed from the collet. Excess braid is trimmed from the outsides of the 

clamped swage tubes, and the mini-PAM is left until the epoxy cures. After the 

swaging process, the mini-PAM should be able to withstand an axial force of about 

50 lb without slippage in the end fitting.  

In order to assess the effectiveness of the mini-PAMs and adequately compare 

the different materials and options available, we constructed two sample PAMs for 
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each varying specifications shown in Table 6.1 and Figure 6.1.  We explored 

variations in bladder material, braid material as well as length. Two samples were 

created and tested for each combination of material and length. These samples will be 

tested to find the optimal combination for this application.  

 

 

 

Table 6.1 Combinations of lengths and materials to be tested.   

Length Braid Material Bladder Material 

1 inch Kevlar Latex 

0.75 inch Kevlar Latex 

0.5 inch Kevlar Latex 

1 inch Nylon Latex 

0.75 inch Nylon Latex 

1 inch Kevlar Silicon 
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Figure 6.1 An uninflated PAM (A) is lined up with an inflated PAM (B) to show 
the compression and stroke length of a Kevlar PAM.  A 1 inch, 0.75 inch, and 0.5 
inch Kevlar, latex bladder PAM is represented by (C), (D) and (E), respectively. 
1 inch and 0.75 inch Nylon, latex bladder PAM is shown as (F) and (G), while 
(H), represents a 1 inch Kevlar PAM with a silicon bladder. 

 

6.2.2 Fixed Pressure Characterization 

The characterization of PAMs is accomplished by charting a force vs 

displacement cycles for each individual PAM at different fixed pressures166.  This is 

used to track the behavior of the PAM while pressurized and obtain a maximum force 

output at each given isobar.  The mini-PAMs were each loaded onto a Bose 

Electroforce materials testing system (LM-1 Bose Corp Eden Prairie, MN) To 

characterize the PAMs, first a relationship was determined between force exerted, 

pressure applied and change in length was determined.  Each range of experiments 



www.manaraa.com

 

 106 
 

started with a displacement of 0mm, and applied with a pressure to obtain 0.50N. 

Pressure applied below this threshold does not fully inflate the PAM and therefore 

does not induce force generation by the PAM.  At each 5 psi pressure increment, this 

maximum starting force was recorded, and the crosshead was lowered until the force 

exerted by the PAM was zero.  This maximum displacement, representing the stroke 

length of the PAM at a given pressure, was then programmed into the loading 

module.  At each fixed pressure increment, the PAM was cycled between zero 

displacement and the appropriate maximum displacement for 30 second intervals with 

a constant strain rate of 0.05mm/sec, forming a sawtooth waveform shown in Figure 

6.2. The force exerted during the three cycles was recorded.  This process was 

repeated in increments of 5psi until a maximum starting force reached 12N, which 

corresponds to approximately 1 MPa of stress for a rat tail disc.  A force-

displacement relationship was established for each pressure increment.  Since we will 

be using two PAMs per tail loading device, this would be double the maximum force 

needed during long term loading regimes.  In addition to obtaining the maximum 

force exertion at each pressure increment, as well as a maximum stroke length, this 

test also tracks the force displacement relationship for each given PAM that will 

allow further comparison. 
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Figure 6.2 Displacement controlled loading during fixed pressure 
characterization.  This is a sample output of the displacement control of a 1inch 
Kevlar, latex bladder PAM applied with 50psi. 

 

6.2.3 Fixed Displacement Characterization 

The use of our long term loading system is dependant on the PAM adjusting 

pressure to keep up with a changing displacement.  This means the displacement and 

pressure will change simultaneously; therefore characterization now, with a fixed 

displacement will show the behavior of the PAM given changes in the other 

parameter.  This part of the study explores the behavior of the mini-PAMs while 

fixing the displacement and varying the applied pressure.  The relationship found 

with this characterization method will also be compared to results found with the 

fixed pressure characterization to ensure a similar relationship regardless of what 

variable is changed.  This is important to investigate, as our final loading device will 
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be subject to changing displacement due to the viscoelastic properties of the tissue as 

well as changing pressure to allow us to dictate an applied force.  Five minutes of rest 

was given for each PAM after each test to allow ample time to recover.  Preliminary 

tests showed that PAMs recovered well within the first minute.  Each PAM is then 

held at fixed displacements and increased pressure to use a second method to verify 

the relationship between displacement, applied pressure and exerted force.  With the 

PAM still mounted in the materials testing bench, the displacement was held constant, 

starting at 0mm.  The pressure was increased in increments of 5psi while the force 

exerted by the PAM was recorded, exemplified in Figure 6.3.  The pressure was 

increased until the recorded force reached 20N.  Five minutes of rest was allowed, 

and this time, the pressure was raised to the previous maximum and decreased at 5psi 

increments, again with the exerted force recorded. Given data found in the previous 

experiment, minimal pressure was applied while the displacement was decreased by 

0.1mm.  The procedures of increasing and decreasing pressures were repeated and 

recorded for each 0.1mm displacement increment ending with a maximum 

displacement of 0.5mm.  The inflation and deflation measurements are fairly similar 

and account for any hysteresis in the system, and are averaged for further comparison. 
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Figure 6.3 Example of incremental increase of pressure while the displacement 
held constant during the fixed displacement characterization. 
 
 

6.2.4 Ex Vivo Viscoelastic Feedback Testing 

 After characterizing the relationship of the PAM, calibration is made with an 

equation to dictate input pressure given a measured strain or displacement.  Since live 

tissue has viscoelastic properties, this system needs to be tested to ensure a stable 

force can be maintained with only displacement feedback. A frozen rat caudal 4-5 

disc was thawed at room temperature for 4 hours and mounted onto a custom loading 

device that includes two PAMs as the driving force.  In this experiment two 1in  

Kevlar braided, latex bladder PAMs were used.  Cross pins are drilled into the 

vertebrae of the motion segment and mounted onto rings that are attached to our 

testing device.  A load cell is fixed in series with the tail, while a strain gauge is 

attached in parallel as a feedback for the loading device (Figure 6.4).  We developed 

an interface in LabView (National Instruments, Austin, TX) to apply and maintain a 

constant 18N compressive force (roughly 1.5MPa) on the disc as calculated for a 
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circular cross section of the caudal disc diameter measured using a radiograph.  The 

feedback coming from the strain gauge is fed back into the equations gathered during 

the characterization step and results in an increase in pressure to compensate for the 

viscoelastic creep experienced by the disc.  This test is to ensure that we are able to 

maintain a constant force, despite the creep of soft tissue while using only 

displacement feedback. 

 

 

Figure 6.4 Picture of the ex vivo test setup. 
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6.3 Results 

6.3.1 Fixed Pressure Characterization 

By applying a constant pressure and varying the displacement, we were able 

to obtain the limits of each set of PAM devices.  First we are able to determine the 

operating range of the PAM by finding the minimum inflating pressure.  Then with 

each step, we are able to monitor the maximum force generation at each given 

pressure. Given enough pressure, all samples tested provided enough force to apply a 

minimum of 12N at maximum extension.  It is observed that the more pressure 

applied to the PAM, the greater the stroke length as well as the force generated.  The 

maximum force generation is found at each pressure, as well as stroke length.  The 

pressure range necessary to generate our desired force will also be critical in choosing 

the correct PAM.  These will be important in comparing the properties with a 

changing pressure.  Additionally, this knowledge will help decide which PAM is 

optimal for our purpose.  As seen in Figure 6.5, there is a slight hysteresis in the 

PAM, as the stretching and relaxing takes different paths.  The behavior of the PAMs 

was observed given a range of static pressures applied.  This allowed a relationship to 

be determined between the applied pressure, the displacement and the pressure 

generated for each given PAM.  This characterization was necessary to compare the 

different materials available to us, as well as the variability among PAMs with the 

same materials. 
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Figure 6.5 Example of a force-displacement graph cycles for a 1in Kevlar, latex 
bladder PAM.  Each pressure isobar is included and shows the increased force 
generated with each increment.  The hysteresis can also be observed between the 
compression and tension experienced by the PAM under displacement control.   

 
 

All of the PAMs created were able to reach exertion of 12N, requiring at most 

65psi to reach that force at full extension.  When comparing the lengths, the longer 

the PAM, the lower the pressure needed to obtain the same amount of force.  For 

example, when comparing the Kevlar braided, latex bladder PAMs, we see that the 

1in is able to reach over 12.67N given just 50psi of pressure, while the 0.75 and 0.5 in 

PAMs are only able to generate 10.08 and 9.06N, respectively as shown in Figure 6.6.  

The range of motion or stroke length is also equally correlated, as the longer PAMs 

have a longer stroke length.  The 1in PAM at 50psi had a stroke length of 0.673mm 

compared to 0.342 and 0.291mm of the 0.75 and 0.5in PAMs.  Considering length 
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only, the same trend is also seen with the Nylon braided, latex bladder PAMs as well.  

The longer 1in Nylon latex PAM generates a larger force of 17.77N and a longer 

stroke length of .275mm at 50psi, compared to the 10.25N and .207mm stroke of the 

0.75in Nylon latex PAM.    
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Figure 6.6 he effects of PAM length is explored in this study.  The force-
displacement graph for three PAMs (0.5, 0.75 and 1.0 inch Kevlar, latex 
bladder) are plotted together at 50psi fixed pressure to compare the behavior 
between varying lengths of the same material PAMs.  The maximum force and 
stroke length can both be observed to increase with an increase in length. 

 

Comparison amongst the materials was another point to be considered.  It was 

learned early on during the fabrication stage that the silicon bladder would be more 

difficult to work with, which lead us to suspect it to be hard to create consistent 

PAMs.  This was true with the two Kevlar braided silicon bladder 1in PAMs we 

tested, as one sample yielded 17.6N and 0.49mm of displacement given a pressure of 
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65psi, while the other yielded 22.7N and 0.67mm of displacement with only 40psi.  

The discrepancy between the two was surprising, despite difficulty with the material, 

since the two samples were chosen as the two most similar pair created.  This showed 

that the silicon bladder was too sensitive given our assembly methods and we are 

unable to consistently create PAMs of the similar properties. 

When comparing the two braiding elements, the Kevlar material provides a 

loose fitting almost fabric-like weave of material, whereas the Nylon material 

provides a more rigid mesh, netting that surrounds the internal bladder.  Both the 

Kevlar and the Nylon materials offer consistent results, however given similar sizing, 

the Nylon mesh provides a larger range of force generation as compared to the Kevlar 

counterpart.  At 50psi, the 1in Nylon PAMs generates almost 18N of force, while the 

1in Kevlar PAM only produces about 13N.  This trend is consistent with the 0.75in 

PAM as well.  This loss in force generation is made up for in increased stroke length.  

While the Nylon PAMs produce higher forces, the Kevlar PAMs have a larger range 

of motion.  Even the 0.5in Kevlar PAM had a larger stroke length, 0.291mm, as 

compared to the 0.275mm stroke length of the 1in Nylon PAM. 

Another interesting point we observed was when the PAM was inflated to 

pressure, this initial maximum pressure was different from the one generated when 

the displacement was cycled. In Figure 6.7, we can see that initially, when the 40psi 

was applied, the force generated was around 9.34N, but after a full stroke length, the 

PAM was returned to the original length, full extension, however, the force was 

raised to 12.02N which slowly relaxed over time.  After each cycle of the stroke 

length, the maximum force was returned to around 12N and displayed the same 
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behavior. All of the PAMs tested, with all of the braid and bladder materials, all 

showed this behavior.  This represented approximately a 25, up to 50% increase in 

force generation for the Nylon braided PAMs at high pressures.  Each PAM also 

exhibited excellent repeatability, as each of the 3 runs for each PAM overlapped with 

the other two runs perfectly as seen in Figure 6.7.  This is another important factor, as 

the ability for the PAM to function repeatedly after loading and yield the same 

response.  This ensures that the PAM will produce consistent results over numerous 

experiments as well as consistent results during cyclic loading. 
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Figure 6.7 A sample force vs time graph is shown here to emphasize the 
repeatability of the PAM during the three cycles of displacement controlled 
loading.  Shown here is three separate runs of a 1inch Kevlar, latex bladder 
PAM held a pressure of 40psi.  Note that the readings overlap exactly, showing 
that the properties between runs do not change.   
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6.3.2 Fixed Displacement Characterization 

 Further characterization of the PAMs was done by holding the displacement at 

certain levels and changing the input pressure at 5psi increments, while measuring the 

force generated.  This provided a different view at the behavior of the PAM.  These 

observed forces were plotted against the applied pressure and graphed for each 

sample PAM, exemplified in Figure 6.8.  A relationship was plotted and a linear best 

fit line was found for each displacement.  The slope of each displacement line was 

compared to each other to determine how similar or otherwise predictable the 

behavior of the PAM would be.  Each of the linear fits yielded R2 values greater than 

0.99.  This linear behavior is beneficial towards defining and characterizing each 

PAM, creating a simple relationship between pressure, displacement and force. 

For each PAM, the maximum change in slope between all of the displacement 

lines was 0.117.  This shows that all of the lines were relatively parallel and showed 

even response regardless of what displacement the PAM was stretched to.  While the 

slopes all fell between 0.05 and 0.12, the only group that was outside of that range 

was the 1in Nylon PAMs.  The 1in Nylon PAM had a large variability between the 

displacements.  This was possibly due to the larger range of forces that it could 

produce, but the difference between smallest and the largest slope amongst all of the 

displacement was 0.54.  This variability was much larger than all of the other 

samples. 
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Figure 6.8 A sample force-pressure graph of a 0.75 inch Kevlar, latex bladder 
PAM from the fixed displacement characterization experiment is shown here.  
Linear best fit approximations were applied to each fixed displacement 
increment.  All increments show relatively consistent slope exhibited, meaning 
the relationship between force and pressure doesn’t change with changing 
displacement.   
 

6.3.3 Comparison of Fixed Pressure and Fixed Displacement Results  

 The fixed pressure and the fixed displacement tests observed the behavior of 

the PAM from two perspectives.  It showed the function of the PAMs given either a 

static pressure or displacement scenario, to ensure that it would function as expected.  

A comparison was then made between the two methods to ensure that the PAM 

behaved similarly when the two methods intersected.  In the case shown in Figure 

6.9, at the maximum unstretched displacement of 0mm, the force reading was found 

given different applied pressures in both sets of tests.  They are graphed here to show 

that indeed we observed the behavior from both tests.  This is important because it 
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shows that regardless of a changing displacement or a changing pressure, we may 

expect the PAM to behave similarly, and any relationship mathematically defined one 

way, would be translatable the given a change in the other counterpart. 
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Figure 6.9 A comparison of the force-pressure graphs between the fixed pressure 
and the fixed displacement characterizations show an overlapping linear region 
that should be the target area for the PAMs to be used.  The maximum pressures 
obtained at each pressure increment were taken and plotted against the 
measurements found at 0mm displacement.  In addition to the stable linear 
region seen, a toe region is observed below 2N.  This toe region represents 
instability and unpredictability on the low end for the PAMs, and should be 
avoided during usage to prevent unreliable function.  This sample graph is taken 
from a 0.75inch Kevlar, latex bladder PAM, with data take at 0mm 
displacement in both the fixed displacement and fixed pressure experiments.   
 

 One additional point we found when it was graphed this method, was a toe 

region when the low force was generated.  This has been observed for some other 
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larger PAMs before, as this toe region shows instability in the lower ranges of both 

pressure and force.  Every PAM tested showed this toe region, the smaller PAMs with 

a smaller toe region, while longer PAMs with a larger toe region.  In this case, the toe 

region extends until around 2N and then straightens to a linear relationship.  This 

linear portion as well as the toe region was illustrated by both the fixed pressure and 

the fixed displacement experiments.  It can be concluded that, as long as the toe 

region is defined, and the PAM is used to function outside of this region, and remain 

in the linear region, the behavior will remain both stable and predictable. 

 

6.3.4 Rat tail disc loading in vitro 

 The PAM system is dependent on feedback of one of the displacement 

parameter and the desired force output to determine the amount of pressure to input 

into the device.  After a relationship was found between these three parameters, it was 

input into a Labview program to allow automatic feedback during a long testing 

scenario.  In this experiment, the goal was to use the displacement feedback to 

maintain a desired force, despite the constant change due to the viscoelastic creep 

from the animal tissue. 

 Using this configuration, we were able to maintain a relatively stable force 

applied to the tail (Figure 6.10).  The target 18 N was not achieved, as the calibration 

was slightly off, and therefore did not quite reach the desired 18 N.   The pressure 

was increased over the 30 minutes to compensate for the viscoelastic creep; however, 

it never reached the 18 N.  The initial jump in force was only 13.88 N, which is only 

77.1% of the intended 18 N force.  The force exertion eventually reached 16.88 N, 
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which was 92.5% of the intended exertion.  These results show that the initial 

calibration, or intercept value was not high enough to account for the required force.  

The initial intercept showing the need for pressure needs to be increased, so the target 

force is reached immediately in the beginning.  The force then continued to increase, 

while the displacement was increased, which showed that the slope was too steep.  

The slope needs to be adjusted lower to result in no force change with the changing 

displacement.  This can be adjusted in the future, and tested in vitro before for every 

set of PAMs before each in vivo experiment. 
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Figure 6.10 The in vitro test showed an inability to fully reach the target 18N, 
but was able to maintain a relatively stable force, as the system tried to keep 
pace with the viscoelastic creep of the tissue.  Further calibration is necessary, as 
well as possible the addition of another pneumatic control, to allow independent 
calibration for each PAM, instead of an averaged response to control both 
PAMs. 
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6.4 Discussion 

In this study, we demonstrated the feasibility of implementing a lightweight, 

flexible, frictionless actuator for applying compressive loads, and characterized its 

use in an animal model of intervertebral disc loading.  Through miniaturization, we 

were able to adapt designs typically used in large robotics applications toward a small 

animal model.  Because of the nonlinear behavior of PAMs, substantial mechanical 

characterization must be performed in order to apply loads with precision163, 165.  As 

such, the relationships between inflation pressure, applied force, and PAM length 

must be explicitly determined.  This was achieved by measuring force during 

incremental changes in length at constant pressures, and during incremental changes 

in pressure at fixed lengths.  Using parameters obtained from our characterization 

experiments, we were successful in applying well-controlled loads to rat caudal discs.  

Initial findings from the fixed pressure characterization showed that all PAMs 

fabricated were able to generate at least 12N of force.  Since 12N corresponds to a 

stress of approximately 1MPa on a typical rat caudal disc (based on disc dimensions 

measured from radiographs and the assumption of circular cross section), this force is 

adequate for our applications.  The anticipated usage will employ two PAMs mounted 

on the in vivo loading device, which will provide a 0-2MPa operating range for 

compressive stress application.  It has been estimated that compressive stresses of 

1MPa (roughly 300% body weight) and above represent a harsh exertion loads, and 

this value has been widely used as the basis of many biomechanics and 

mechanobiology experiments75, 168.  Our in vivo experiments will apply dynamic 

compressive forces with variations in load history under load control.  
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6.4.1 Selecting the Optimal PAM Specifications  

Outcomes of our mechanical characterization were used to assess PAM 

dependence on material and length as well as their uniformity and consistency.  As a 

result of the characterization experiments, we were able to make choices about 

material and length specifications to use in our loading device.  The most obvious 

choice made was the selection of the bladder material.  The silicon bladder proved to 

be unreliable in terms of uniformity.  Fabrication with the silicon bladder was less 

precise, which led to greater variation, and ultimately unreliable product.  The force 

profiles showed that the silicon bladder PAMs were unreliable; the variation between 

the PAMs would provide very uneven properties when loaded in parallel.   The 

choice between the braided mesh materials was more difficult.  While both the the 

Nylon and Kevlar mesh provided adequate properties, when combined with the latex 

bladder, there were subtle differences that distinguished each.  The Nylon mesh 

provided a more dynamic range of force generation, while Kevlar mesh provided a 

larger stroke length.  This trend was observed for both the 1 in as well as the 0.75 in 

PAMs, showing consistency between PAM lengths.  While the expanded force range 

offered by the Nylon PAMs is an attractive property, given our known or anticipated 

usage, the force yielded by the Kevlar PAMs are more than adequate.  We tested both 

types of PAM, and both materials were able to provide double the desired force.  

Additionally, stroke length becomes important, as there is a significant amount of 

viscoelastic creep during axial loading of an intervertebral disc.  The 0.5 in Kevlar 

PAM, the shortest PAM we tested, had a longer stroke length than the longest, 1 in 

Nylon PAM.  This showed that the shortest Kevlar PAM was able to provide 
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adequate force, while providing a longer stroke than the Nylon PAMs.  Since force 

generation was adequate for both materials, the most favorable combination of 

materials were the Kevlar mesh with a latex bladder.  With this we provide sufficient 

force, maximum stroke length and reliable and repeatable construction. 

We relied heavily on the characterization tests to select appropriate 

dimensions for the PAMs used.  Consistent with other larger and previously used 

PAMs166, 169, we found that the longer the PAM, the greater the force and stroke it can 

produce.  The 1in PAM required less pressure to reach 12N, while the 0.75 and 0.5in 

PAMs required progressively more pressure to reach the same exertion.  Although it 

would initially seem that the higher force capability of a long PAM is an advantage, 

size and precision must also be considered.  Weight differences among different sized 

PAMs are negligible.  Considering motion segment lengths in the rat tail, smaller 

more compact devices would be easier to handle and less obtrusive for the rat.  In 

terms of force generation, we found that smaller PAMs require greater inlet pressures, 

and this broader range of pressure permits finer control over applied loads.  However, 

in contrast with the force needed during testing, the stroke length of PAMs must 

accommodate the range of creep displacement anticipated for tails discs subjected to 

compression.    Experiments have shown over 1mm during creep compression 97.  

Given the limits of pressure in our testing setup, we were not able to measure absolute 

stroke length for each PAM, but it is understood longer PAM have a higher stroke 

length.  In order to ensure that sufficient force could be generated for a PAM 

shortened by 1mm, a longer PAM would be necessary.  Based on the competing 
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factors of precision and magnitude of force generation, the 0.75 in PAM was deemed 

the most appropriate of the three lengths tested. 

6.4.2 PAMs as Actuators for in vivo Rat Tail Loading Device  

Ultimately the PAM-based rat tail loading apparatus will be subject to time-

varying displacements and time-varying forces due to not only the dynamic nature of 

the loading regimen, but also the viscoelastic behavior of the intervertebral disc.  A 

load-controlled mechanism, therefore, requires monitoring displacements, while 

adjusting the inlet pressure.  The characterization of the PAMs using both static 

pressure and static displacement was necessary to verify that the PAMs behaved 

similarly as each parameter is adjusted.  The linear relationship established between 

pressure and applied load during the fixed displacement characterization yielded good 

fits, meaning that the equations found would be reliable when calculating needed 

applied pressure. When this set of slope was compared, the variation amongst them 

differed by less than 0.117 (N/psi) for all PAMs tested except for the 1 in Nylon 

PAMs.  The variation within that group had a range of 0.54, which is more than four 

and a half times larger than all of the other groups.  This showed that the 1 in PAM 

was much harder to predict and therefore less reliable and should not be used.  We 

believe that this is due to the dynamics of the Nylon mesh after reaching a certain 

size.  The calculated slope would change too drastically for a simple relationship to 

be defined.  This provided additional information to exclude the Nylon 1 in PAM as a 

possibility in the in vivo loading device. 

Comparison between changing pressure and displacement was conducted by 

plotting the results from the fixed pressure and fixed displacement experiments on the 
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same graph to compare the slopes generated.  When compared, we found that the two 

experiments yielded results that were in line with the other seen in Figure 6.9.  This 

was encouraging, as it meant that we could reliably predict force regardless if the 

displacement or the pressure was changing.  It showed from both perspectives, 

regardless of displacement change due to creep, or our pressure adjustments, we 

could accurately account for and produce the force we desire. With these, we 

determined a relationship between the displacement, pressure and force, and we can 

accurately predict how the PAM will respond.  This shows promise as we will be able 

precisely control and regulate the loads we apply using the PAM in the loading 

device.  

 

6.4.3 Limitations of PAMs in this Application  

While we have listed the many benefits of using PAMs for our application, the 

results have revealed a few spots of caution.  In the fixed pressure characterization, 

the trials were all identical, but they all exhibited a large hysteresis when the 

displacement is allowed to reach zero force. Unequal path taken by the PAM results 

in an increased force output after the first cycle, this higher force will never be 

reached during our testing scenario.  While it is intended that our loading device will 

provide cyclic loading, it will be force control, not strain, and will never have the 

force dictated by strain, as the pressure will constantly be calibrated to supply more or 

less pressure into the PAM.  The initial force yielded during the testing scenario will 

be the highest force generated by the PAM, and will not enter the higher force range.  

The PAM will not be forcibly stretched longer, rather only be relaxed by a passive 
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rehydration.  The extra tier of force achieved will not be present during our loading 

experiments, and should not interfere, as long as care is not taken to actively pull 

apart an already loaded PAM.   

 Another point of caution is the identification of a toe region when the force 

generated is plotted against the pressure applied.  This is shown in the fixed 

displacement characterization plots, and when both characterizations were compared.  

The toe region found on these graphs, shown in Figure 6.9, show that there is a region 

that does not behave as reliably or predictably.  This toe region shows that below 2 N 

of force, where we can not accurately calculate or generate force; meaning the PAMs 

should only be used above the 2 N range.  The linear range shown from the held 

displacement graph, is also the portion that is in line with the results from the held 

pressure graphs.  Similar toe regions occur in the low force, low pressure areas on 

other larger PAMs tested for other applications.  Unpublished data suggests that this 

region is static, and limited to around the 2 N range.  In the larger PAMs, however, 

this 2 N becomes insignificant, or even undetectable, as the force ranges to over 1000 

N, so 2 N then occurs within normal fluctuations.  Due to this reason, this toe region 

has gone unnoticed until recently, as these PAMs and these small applications are the 

first of this magnitude.  Fortunately, this still means that the PAM can be used 

predictably when outside of the toe region, and within the linearly defined region. 

 

6.4.4 Ex vivo Loading Using PAMs 

There was limited success in applying a constant force towards biological 

tissue, in this case a rat tail disc. We showed that our system of displacement 
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feedback was active and was able to track the viscoelastic creep.  The initial intended 

force was not reached, however, and should be adjusted to apply increased pressure in 

the initial stages.  After the initial jump, we showed that we could maintain our initial 

force; however, it also continued to increase, in response to the change in 

displacement.  This showed that our slope calibration was slightly off, as the 

increased pressure more than overwhelmed the displacement increase.  Instead the 

slope needs to only balance the changing displacement to result in a static exertion 

force.  When considering the initial force that was reached, the system was held semi-

stably, as there was only a 21% increase in force while the system was trying to 

remain static.  The PAMs can be recalibrated as a set, on a in vitro system before each 

in vivo run, to ensure the accurate functionality of the PAM system.  This would 

allow changes in equations and calibrations to the 2 PAMs as a unit in the device, 

rather than individually. 

 Some of these inaccuracies could be due to the use of only one pressure 

regulator.  At the time of testing, we tested the two PAM system using one set of 

tubing connected and controlled using one pressure regulator.  Although the two 0.75 

in PAMs were similar, they were not the same, and therefore had different equations, 

with different slope and intercept values, which could have made a difference in the 

overall output.  To account for two sets of equations, they were averaged and used in 

the Labview code, however, future work has already begun to use two sets of pressure 

regulators, so that the PAMs can be controlled independently and offer more precise 

control. 
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6.5 Conclusion 

Small miniature PAMs were successfully created for use as a force actuator in 

an axial caudal rat disc loading device.  Upon testing many materials and 

configurations, a 0.75 in PAM, with a latex bladder and Kevlar braided mesh was 

selected as the most appropriate combination of variables for this application.  There 

was reliable and repeatable data recorded for force and displacement measurements, 

given a static pressure input, as well as equally dependable data for force and 

pressure, given a static displacement.  When compared, both sets of data agreed with 

each other, and provided a linear relationship between pressure and force.  A toe 

region was discovered when the forces generated are below 2 N, however, outside of 

that, the PAM behaves linearly and can be used freely outside that toe region.  In the 

in vitro loading system, the PAMs need to be further calibrated in the future, to better 

reach the desired applied force.  The force, pressure and displacement relationship 

must also be slightly adjusted to allow for better control of a stable desired force.  

This objective may be reached easier with the help of an additional pressure regulator, 

so that each PAM may be treated independently rather than as a unit. 
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Chapter 7 Conclusions and Future Work 

The overarching goal for this project was to investigate the IVD, as it pertains 

to behavior, both mechanical and biological.  The hydration within the NP became a 

factor that influenced these changing responses and motivated further exploration.  

Much is still unknown about the disc, needs to be discovered, before we fully 

understand the cause and effects of degeneration.  The complex environment that 

comprises the disc still has many undefined parts that contribute to how the disc 

behaves.  The work presented in this dissertation only begins to uncover some of the 

simple properties of the disc, beginning with pressurization.  It also leads the way in 

revealing the effects of load history on the disc’s mechanical behavior as well as 

biological response. 

A degenerative model was first successfully developed in a rat disc in order to 

provide a case study for future experiments in our lab.  This model used a trans-

annular puncture, guided radiographically to induce the degeneration.  We explored 

several size needles, but found that an 18g needle was the only size that could reliably 

trigger the desired effects.  The creep was monitored and fitted using viscoelastic 

models, and verified change in response.  Histological changes were also monitored 

up to four weeks and confirmed breakdown of the AF.  Our results were consistent 

with other explored puncture or stab models.  This study additionally provided a key 

point that helped us pursue further studies.  It showed that using a 22g needle 

puncture would disrupt neither the mechanics, nor the biological health of the disc.  

This meant that we would be able to insert a small sized pressure sensor using a 22g 
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needle as a guide, and not affect the disc; a critical detail that would allow us to make 

pressure measurements in the NP. 

Utilizing the collaborative efforts of Dr. Yu’s lab, we were able to develop a 

miniature fiber optic pressure sensor based on Fabry-Perot interferometry.  It was the 

smallest pressure sensor at the time, measuring 360µm, able to fit into a 22g needle 

and inserted into a caudal disc.  Along with the degenerative rat tail model, we used 

the pressure sensor to observe intradiscal pressure during intervals of block loading.  

We compared healthy and degenerate discs and showed a decreased capacity by the 

degenerate discs to generate a hydrostatic pressure.  This is consistent with what was 

seen in a porcine model, and more importantly human cadaver discs.  Our observed 

healthy to degenerate ratio was surprisingly similar to that of the human discs, 

demonstrating that our degenerate model behavior drew comparison with a grade IV 

degenerate human disc.   

To begin research on the effects of load history, frozen caudal rat motion 

segments were loaded with varying preloads and immediately applied a following 

larger exertion load.  The creep response was fitted using three different viscoelastic 

models: the stretched exponential model, the standard solid viscoelastic model and a 

fluid transport of the disc model. The latter two showed that indeed the disc behaved 

differently given changing prior stress.  More specifically, the fluid transport model 

suggested that the intradiscal pressure was a key element in this change.  To further 

capitalize on the miniature pressure sensor, we measured the pressure generation of 

the NP given similar loading conditions.  We found that the load history directly 

changed the pressurization of the disc, as an applied preload significantly lowered the 
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pressure generation during the exertion load.  In this experiment, we verified 

experimental finding with mathematical modeling, and then observed the change 

directly.  

After exploring the mechanistic behavioral changes, our investigative efforts 

turned to the biological impact of load history.  Similar to our previous experiment, 

we applied preloads followed by exertion loads and harvested NP cells to measure 

gene expression.  A panel of associated genes were investigated, most notably type II 

collagen and aggrecan.  Given the known pressurized environment of the NP, the 

nonpreloaded group was predicted to produce elevated response for a number of 

catabolic genes, which would parallel other in vitro experiments with applied 

hydrostatic pressure.  Instead the preloaded, lower pressure environment yielded a 

greater response, which we now believe to be due to a higher tonic environment with 

a higher osmolarity.  A longer loading regime was also applied in attempt to capture 

the gene expression with a higher response to gain additional statistical significance; 

however, the expression was instead lower, suggesting the disc reached a biologic 

equilibrium. Two additional control groups were also investigated to compare and 

ensure that the resultant gene expression was indeed due to the combination of the 

preload and exertion load and not due to the preload alone, or a higher average 

applied stress.   

Until this time, the prior loading regimes have been limited to a short duration 

due to anesthetic constraints on live animal experiments.  To combat this, we began 

designing a long term loading device using a novel device created by Dr. Wereley’s 

lab, the PAM.  A number of uniquely small PAMs with a variety of materials and 
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specifications were created and tested to use as the actuating component of our 

loading device.  It was determined that a 0.75 inch PAM with a latex bladder and a 

Kevlar mesh braiding would be the optimal materials to use.  This PAM in addition to 

our previously used pin and ring configuration was used to compress a caudal rat 

disc.  This calibrated setup was assessed on a previously frozen tail to test the ability 

for our LabView program and strain feedback system to maintain a stable force while 

the disc tissue undergoes viscoelastic creep.  While results were only mildly 

successful, we believe that the use of two separate pressure regulating elements 

would allow for a more accurate feedback response. 

The work completed up until now has only begun to explore the impact of 

load history.  We have investigated changes in mechanical behavior and gene 

expression as a result of simple sequences of short term loading.  The development of 

the PAM loading device will allow the application of loading regimes for longer 

periods of time on a live rat model.  This will allow more relevant and complex 

sequences of loading be investigated, such as a daily loading routines for several 

weeks.  This will allow for not only a look at changes in viscoelastic properties and 

gene expression, but also give enough time for histological changes.  Further studies 

can also be pursued to reveal more specifically the cause for the gene expression 

changes observed.  Measurements involving osmolarity of the NP as well as other 

cellular factors can monitored for changes under applied loads.  Recently, a smaller 

and more robust pressure sensor was developed in Dr. Yu’s lab and may be able to 

provide live in vivo readings while under loading.  The more robust manufacturing 

method may allow for a wider array of tests to be performed.  A number of paths can 
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be taken to further understand the role of hydration, and effects of load history on the 

behavior of the IVD; however, the work presented above uncovers another piece to 

complete the picture of disc function.  We have opened to door to the role load 

history has in loading response.  It impacts how the NP must be thought of, as an ever 

changing hydrated matrix.  It may indicate beneficial loading regimes that may help 

build strength by inducing extracellular matrix production, or by simply suggest what 

a better option, a straight dead lift of a sofa bed, or a gradual warm-up of bookshelves 

and TV before the sofa bed.  It is important that the knowledge gained about 

pressurization and hydration will be applied in future studies to further uncover the 

response of the disc.   

These studies have contributed many things unique in this field.  First, at the 

time of publication, the use of a pressure sensor inside a rat caudal disc to measure 

intradiscal pressure was the first of its kind.  While past studies have investigated 

pressure generation within other animal models, our study helps bridge the gap 

between large and small animal models through the use of a novel fiber optic pressure 

sensor.  The main significant contribution of this work has been the investigation of 

the effects of load history.  Having been alluded to by several studies, our 

experiments explore mechanical and biological response of the disc towards prior 

loading.  This has yet to be investigated in the past, specifically for the disc, and 

provides a foundation for disc behavior, given a specific load history.  This research 

reiterated the importance of NP hydration and pressurization, and response due to 

small nuanced changes in the disc.  Lastly, we hoped to improve on the effectiveness 

of a long term loading device for caudal motion segments on an in vivo rat model 



www.manaraa.com

 

 135 
 

through the use of PAMs.  PAMs offered a variety of benefits as well as a lighter 

device that is fitted onto the rat.  Our discovery helped better understand the workings 

of the NP, and will serve as a basis for future discovery.  These contributions 

advanced the knowledge in the field of disc mechanobiology and took advantage of 

two novel technologies in this pursuit; however, much still needs to be learned before 

an effective and thorough therapy can be developed. 
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Appendix A 3 

 

                                                 
3 In case nothing has piqued your interested so far…  
As published in D Hwang, V Moolchandani, R Dandu, M Haider, J Cappello, and H Ghandehari. 
Influence of polymer structure and biodegradation on DNA release from silk-elastinlike protein 
polymer hydrogels. International Journal of Pharmaceutics (2009). 368(1-2): 215-219. 
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